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Sun Reveals Secrets of “Magic”
New MAJC Architecture Has VLIW, Chip Multiprocessing Up Its Sleeve
by Tom R. Halfhill

If there were any doubts that VLIW has succeeded RISC
as the most important influence on new microprocessor
architectures, they vanished this month when Sun pulled the
latest example out of its hat: MAJC (pronounced “magic”),
the Microprocessor Architecture for Java Computing.

Sun says it conjured MAJC for the coming wave of net-
worked information appliances—advanced set-top boxes,
screen phones, automotive-navigation systems, home video-
game consoles, and the like. There’s no technical reason that
a MAJC chip couldn’t power a PC, workstation, or server, but
Sun is pursuing the nebulous post-PC market for obvious
business reasons: it’s more trendy, and the path of least resis-
tance rarely leads through the kingdom of Wintel. Although
Sun won’t disclose the first MAJC chip until Microprocessor
Forum in October, it described the instruction-set architec-
ture at the Hot Chips conference last week.

MAJC offers yet another spin on the VLIW technology
explored by mainframe engineers in the 1960s and pioneered
by Multiflow, Cydrome, and Culler in the 1980s (see MPR
2/14/94, p. 18). Since then, VLIW has evolved in a variety of
ways, forming the basis for such architectures as Intel’s
IA-64, Philips’s TriMedia, Equator’s MAP1000, Fujitsu’s
FR-V, and high-end DSPs from Texas Instruments, StarCore,
and Analog Devices.

Each variation takes a slightly different approach. Some
companies, such as Intel and Hewlett-Packard, avoid the
VLIW moniker altogether, preferring to invent stainless
labels such as EPIC (explicitly parallel instruction comput-
ing) to describe their enhancements of the concept.

No matter what they’re called, all of these architec-
tures have two things in common: bundles or packets of
multiple instructions and compiler-directed parallel execu-
tion. This contrasts with today’s superscalar RISC and
CISC architectures, which handle instructions as discrete
units and schedule the instructions for parallel execution at
run time, often by reordering them on the fly. MAJC is a
typical VLIW architecture in the sense that it too relies on
instruction packets and smart compilers instead of com-
plex control logic.

Sun’s contribution to the art appears to be a Java-
friendly (though not Java-specific) architecture that’s partic-
ularly amenable to multithreading and chip multiprocessing
(CMP)—the integration of multiple CPU cores on a single
die. This should be a happy marriage, because Java is inher-
ently a multithreaded language for multitasking operating
systems. It also means that MAJC is a highly scalable archi-
tecture designed to take advantage of deep-submicron IC
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processes, because a single processor can integrate up to one
thousand easily cloned CPU cores.

But the name MAJC is misleading. Although it has
some features to improve the performance of Java virtual
machines and just-in-time (JIT) compilers, MAJC is a
general-purpose architecture that can run software written
in any language. Yet it has virtually nothing in common with
Sun’s SPARC, a seminal RISC architecture for general-
purpose computing, or Sun’s Java chips, which have a stack-
based architecture and a bytecode-native instruction set.

Why Another New Architecture?
Sun says it launched the MAJC project in 1995 after identify-
ing four trends: the growing importance of compute-inten-
sive algorithms in application software; the rapid adoption
of Java, a virtual platform that insulates application pro-
grammers from CPUs and operating systems; the additional
parallelism available in multithreaded code; and the system-
on-a-chip (SOC) approach to microprocessor design, which
takes advantage of growing transistor budgets by integrating
CPU cores with on-chip peripherals and large caches.

Marc Tremblay, MAJC’s architect, says those obser-
vations led his team to develop an architecture that can more
efficiently exploit the thread-level parallelism in media-rich
code and make it easier for engineers to design and verify
highly integrated processors with tens or hundreds of mil-
lions of transistors.

Of those four reasons, however, perhaps two explain
why Sun didn’t simply extend its existing architectures. The
remaining reasons seem more questionable.

Consider the first trend Sun identifies: the growing
importance of compute-intensive algorithms in general
application software. As Sun points out, today’s programs
often manipulate 3D graphics, digital video, and digital
audio and perform other tasks in which the ratio of compute
operations to memory operations is greater than in the past.

This trend has not escaped the notice of other CPU
designers, and most of them are coping without creating new
architectures. Virtually every RISC and CISC architecture
has added multimedia or digital-signal-processing (DSP)
extensions in recent years. Indeed, Sun helped lead the
charge by introducing its visual instruction set (VIS; see
MPR 12/5/94, p. 16) for UltraSparc in 1994, years before the
x86 gained MMX, SSE, or 3DNow.

Sun retorts that media processing is much easier when
a CPU has lots of visible registers. By starting with a blank
slate, Sun was able to define an architecture that allows for
hundreds of registers, plus some four-operand instructions
that would be difficult to add to existing architectures. Still,
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given the obstacles to establishing a new architecture in the
market, Sun doesn’t need MAJC just for multimedia tricks.

Betting On Java
Nor is the popularity of Java a compelling motive. Sun cites a
Dataquest projection that about 70% of Fortune 500 compa-
nies will be using Java by next year. Of those companies,
about 80% will be using Java on clients, and virtually 100%
will be running Java on servers. Although that speaks well of
Java’s penetration in large enterprises, it doesn’t justify the
enormous effort it will take to win acceptance for MAJC.

To begin with, even Sun says MAJC isn’t aimed at cor-
porate clients and servers. Those kinds of computers have
ample memory for JIT compilers, such as Sun’s HotSpot,
which are improving by leaps and bounds. Today’s CPUs
already do a fairly good job of running Java, and they might
do much better with the addition of a few Java-specific
instructions—something that’s likely to happen if Java
becomes as universal as Sun hopes.

In the information-appliance market that Sun is target-
ing with MAJC, Java’s role is uncertain. It might become a
dominant factor, or it might be limited to a few applets on
Web sites; it’s too early to tell. Such products will almost cer-
tainly have less memory than PCs, so the ability of MAJC to
accelerate Java with little or no help from a memory-hungry
JIT compiler would definitely be valuable.

But remember, that’s also why Sun invented bytecode-
native Java chips. Fixing the problems that have kept Sun’s
PicoJava core and MicroJava-II processor from achieving any
visible success seems like an easier chore than introducing
another new architecture.

Java has become so critical to Sun’s business strategy,
however, that questioning why Sun does anything to further
Java is like asking why Intel clings to a CPU architecture
designed when Jimmy Carter was president, or why
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Microsoft battles the U.S. government to keep Windows
from running without a Web browser. When a company pins
its future on a strategic technology, it will do almost anything
to promote or defend that technology.

Sun’s Approach to VLIW
The two remaining reasons for creating MAJC make more
sense: to extract more parallelism from program code and to
exploit Moore’s Law for implementing something other than
Godzilla-sized caches.

Despite the diminishing returns of superscalar designs,
Sun contends that extracting more parallelism isn’t just a
pipe dream. The key is to take advantage of thread- and
method-level parallelism—tactics that play to Java’s
strengths as a multithreaded, object-oriented language.

At best, claims Sun, a CPU needs only four pipelines to
wring almost all of the instruction-level parallelism out of a
single execution thread (or a single-threaded process).
Therefore, MAJC instruction packets can vary in size from
one to four subinstructions, according to how many instruc-
tions can execute together without data dependencies. A
compiler makes this determination—MAJC does no run-
time reordering, unlike most superscalar architectures—and
attaches a two-bit header to the packet indicating its length.
At run time, a MAJC processor reads the header and dis-
patches one to four subinstructions to a CPU core. As
Figure 1 shows, each subinstruction is 32 bits long, so pack-
ets can vary in length from 32 to 128 bits.

MAJC departs not only from the approach that Intel
and HP take with IA-64 (see MPR 5/31/99, p. 1) but also
from the classic VLIW architectures of the 1980s. At the heart
of this departure is Sun’s assertion that anything beyond
four-way instruction-level parallelism is wasted on general-
purpose code (though not necessarily on highly vectorized
scientific code, which is not a priority for MAJC). Some CPU
architects argue that designs as wide as 8 or 16 pipelines
could find useful parallelism—and, indeed, that VLIW is a
way to make such designs practical without the pain of com-
plex control logic.

Intel and HP, for example, devised IA-64 to enable the
design of very wide processors. Unlike MAJC, IA-64 always
bundles the same number of instructions (three) in a packet
that’s fixed in size (128 bits). Each packet has a header that
indicates how many instructions in that packet and follow-
ing packets can execute without dependencies. In this way,
IA-64 enables n-way instruction-level parallelism, because it
can chain multiple instruction packets together into execu-
tion packets of any length.

Instead of spending transistors on what it believes are
the wastefully diminishing returns of very wide designs, Sun
would rather pursue thread-level parallelism by integrating
multiple cores on a single chip. Different threads and proces-
ses should have few or no mutual data dependencies. MAJC
compilers can bundle the instructions of those threads and
processes into different packets, and MAJC processors can
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Figure 1. MAJC uses variable-size VLIW packets with 1 to 4 sub-
instructions. A two-bit header indicates the packet size.
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dispatch those packets to different cores. So MAJC allows
four-way instruction parallelism per thread and n-way
thread parallelism for n-threaded code. Sun says it would
rather build a CMP processor with two four-way cores than
a processor with a single eight-way core.

Although nothing inherent in IA-64 prevents thread-
level parallelism or CMP, Sun claims Intel’s architecture is
more complex, especially with its baggage of x86 compatibil-
ity. Sun thinks MAJC will make it easier to implement CMP
in a comparable IC process. Nobody will know for sure until
actual implementations of both architectures appear.

Both MAJC and IA-64 avoid a drawback of some clas-
sic VLIW designs from the 1980s—the symbiotic relation-
ship between VLIW formats and microarchitectures. In
those machines, the instruction slots in each fixed-length
VLIW packet mapped directly to the configuration of func-
tion units: integer slots, floating-point slots, and so forth. If
the compiler couldn’t fill all the slots with nondependent
instructions that exactly matched the complement of func-
tion units, it padded the unusable slots with NOPs. This
wasted instruction-fetch bandwidth and inflated the size of
the code. It was less of a problem with the scientific code that
early VLIW architectures were designed to execute, but
MAJC needs to run more general-purpose code.

MAJC’s variable-size VLIW format allows compilers to
create shorter packets if there aren’t enough nondependent
instructions, so there’s no need to pad any slots with NOPs.
Intel achieves the same thing by divorcing the relationship
between the size of instruction packets and the chains of
nondependent instructions.

A Marriage Made in Hacker Heaven
Now it’s obvious why MAJC is a good mate for Java. It’s so
easy to create threads in Java that the biggest problem is
spawning too many of them—potentially leading to “dead-
locks” in which multiple threads develop interdependencies
that prevent them from completing their tasks.

But that’s an embarrassment of riches. The good news
is that MAJC should allow a CMP processor to extract more
thread parallelism from multithreaded software without
requiring Java programmers to write their code any differ-
ently than they do now.

Even within a thread, Sun claims, a MAJC compiler will
find more parallelism in Java code than an ordinary compiler
finds in procedural code. That’s because MAJC supports two
additional techniques: method-level parallelism and what
Sun calls “vertical multithreading.”

Method-level parallelism builds on Java’s strengths as a
thoroughly object-oriented language. All executable Java
code resides in methods (functions within classes). In C++
programs, it’s still possible—indeed, almost inevitable—to
find procedural code mixed together with object-oriented
code. Java compilers won’t allow that.

MAJC assumes that methods are largely free of mutual
dependencies because they are independent subroutines,
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even though they can access some common variables. MAJC
processors will try to take advantage of this by speculatively
executing multiple methods in parallel, almost as if they were
explicitly coded threads.

The key difference between method- and thread-level
parallelism is the speculation. It’s similar to speculative exe-
cution in other CPUs, except it’s more closely mapped to the
higher-level programming structures of object-oriented lan-
guages like Java. Sun fancifully calls it “space-time comput-
ing,” because different methods execute in their own mem-
ory spaces and perform operations that aren’t synchronized
until a later time.

King of the Heap
One method in a thread, which Sun calls the “head thread,”
executes in the standard memory heap as usual. The other
methods execute in speculative heaps, which Sun calls
“dimensions.” The heaps are completely independent. If a
speculative method creates a new object, that object appears
only in its speculative heap, where it remains “unborn” from
the viewpoint of the head thread and other speculative
methods. To improve performance, the processor temporar-
ily disables exception checking and thread synchronization
when executing speculative methods, because run-time
exceptions and thread conflicts are rare.

A checkpointing mechanism allows speculative meth-
ods to stall each other if the processor detects a dependency.
It can detect read-after-write and write-after-write viola-
tions. Only after the processor resolves all dependencies does
it validate the results of the speculative methods, merge their
heaps, deliver their unborn objects, and create a new head
thread. If the processor cannot resolve a dependency, it dis-
cards the speculative results and garbage-collects the specu-
lative heaps without penalizing the head thread.

Method-level parallelism is even more transparent to
programmers than thread-level parallelism, because it re-
quires no extra code at all. Like speculative execution in
other CPUs, it happens at run time without any effort by the
programmer—although adhering to good object-oriented
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Figure 2. Vertical multithreading is Sun’s technique for switching
contexts among program threads during memory accesses.
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design principles by writing self-contained methods would
probably help.

Likewise, the technique that Sun calls vertical multi-
threading is also transparent to programmers. Essentially, it’s
Sun’s term for switching contexts among different threads to
fill time that a processor would waste after a cache miss.
While the processor is waiting on a memory access, it can use
its otherwise idle cycles to execute instructions in another
thread—again based on the assumption that threads have
few data dependencies. As Figure 2 shows, a MAJC processor
can maintain state for up to four interwoven threads without
penalizing the highest-priority thread.

Although MAJC has some instructions that make it
easier for compilers to manage vertical multithreading, at the
processor level it’s an implementation option, not an archi-
tectural feature.

Designed for Scalability
MAJC permits anything from a one-way scalar processor (in
effect, disabling VLIW by never issuing more than one
subinstruction per packet) to a CMP superchip with an arbi-
trarily large number of four-way cores. (Actually, MAJC lim-
its CMP to 1,024 cores per chip because cross-calls between
cores use a 10-bit identifier, but transistor densities will dic-
tate the practical limit for many years.)

To make this scalability easier to implement, MAJC
function units are largely orthogonal. As Figure 3 shows,
there are no integer units, floating-point units, multimedia
units, or DSP units. Any function unit can handle any data
type. Each unit has its own adder, multiplier, and shifter.

This eliminates the instruction steering required in some
other VLIW architectures, such as TriMedia (see MPR 12/5/94,
p. 12). With one exception (described below), a MAJC com-
piler can put any type of instruction into any packet slot, and
the processor can dispatch any instruction to any pipeline.
This design also reduces stalls due to resource dependencies,
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because a processor with four function units always has
enough execution bandwidth to handle the largest-size packet.
The downside, of course, is larger function units.

There is one exception to this orthogonal design. As
mentioned above, instruction packets have a two-bit header
that indicates how many subinstructions follow. The header
maps onto the opcode space of the first instruction, as
Figure 1 shows. Therefore, the first instruction can address
only three registers (two sources and a destination), not four
registers (three sources and a destination).

This limitation means a compiler can’t put instructions
that manipulate four operands—such as a nondestructive
multiply-add (MADD)—in the first instruction slot. The
header consumes bits required to address the fourth register.
It also means the first function unit in a core needs some
extra decoding logic to interpret the header, and that it can
do without some logic required to execute four-operand
instructions. But these are relatively minor differences, and
the other function units can be truly identical.

All of the units have 64-bit data paths. (MAJC allows
32-bit data paths for lower-cost chips.) They can handle
64-bit long-integer and double-precision floating-point
instructions; 32-bit integer and single-precision floating-
point instructions; 16-bit short-integer instructions; and
some instructions that manipulate 8-bit values, particularly
for single-instruction multiple-data (SIMD) operations.
Some instructions have saturation, and others support spe-
cial media types, such as 8- and 16-bit audio and graphics
data. There are also DSP-type instructions; these include
MADDs and operations that shuffle bytes, extract bits, count
leading ones/zeroes, and find minimum/maximum values.

Variable-Size Register Files
Each function unit has its own register file, which program-
mers can partition as local and global registers. The instruc-
tion format allocates seven bits for register specifiers, allowing
up to 128 register addresses. As Figure 4 shows, a program-
mable delimiter that can range from 0 to 127 in 32-step incre-
ments indicates which registers are local and which are global.
When an instruction stores a value in a global register, the
CPU broadcasts that value to the corresponding global regis-
ters in all other function units in that core.

If the delimiter points at R95, for example, then 96 reg-
isters (R0-R95) are globals shared by all function units. The
remaining 32 registers in each unit are locals, accessible only
by that unit. In a four-way core, this would make 224 regis-
ters visible to programmers and compilers—96 globals and
128 locals. This arrangement is repeated for every core. Nor-
mally the registers are 64 bits wide, although the architecture
allows 32-bit implementations as well.

This register-rich design does bolster Sun’s argument
that MAJC is particularly well suited for media processing in
ways that existing architectures would find difficult to match.
For instance, a four-operand, nondestructive MADD is a
useful instruction, but it needs tons of registers. A four-way
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Figure 3. MAJC function units are orthogonal, capable of han-
dling any type of instruction dispatched from any instruction slot.
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MAJC core can execute three MADDs per cycle, with a
latency of six cycles. That means 18 pipelined MADDs could
be in flight at once, requiring 72 registers to juggle their
operands. Few existing architectures have that many registers
to burn. Register renaming is a workaround, but at the cost
of additional complexity.

With its orthogonal function units, duplicate register
files, and provisions for CMP, MAJC encourages a cookie-
cutter approach to chip design. Sun’s concept is that engi-
neers can concentrate on designing a powerful function unit
with a fully custom layout and optimized data paths, then
simply repeat that layout as many times as necessary to reach
the desired level of performance. After a design team com-
pletes the first unit, it can add others in a step-and-repeat
fashion with relatively little effort.

In this way, MAJC chips can leverage the expanding
transistor budgets granted by the relentless march of Moore’s
Law to integrate more functional logic, not just larger cache
arrays and superscalar interlocks. Theoretically, such a
design should also be easier to verify.

This kind of design reuse inevitably wastes some tran-
sistors in surrounding structures, but it’s a reasonable trade-
off in an era when transistor budgets are running surpluses.
Software engineers make similar tradeoffs when they accept
some code inflation in return for the greater productivity of
high-level languages and object-oriented programming.

According to Sun’s cycle-accurate simulations, a MAJC
processor should outperform a comparable RISC processor,
even without using CMP. But we expect Sun’s first MAJC
chip to integrate at least two cores—partly to show off what
the architecture can do and partly to inspire potential li-
censees. At 300–500 MHz, such a chip could match the
superlative performance of the Emotion Engine processor
that Sony and Toshiba designed for the new PlayStation (see
MPR 4/19/99, p. 1). But with its large function units and
multiple cores, the MAJC chip could match the Emotion
Engine’s enormous die size and manufacturing cost too.
That’s probably why Sun says the first chip isn’t intended for
very low cost or battery-powered products.

Long-Range Vision
Sun is proclaiming MAJC as “the most important semi-
conductor architecture of the next 20 years.” That seems a
trifle ambitious, in view of the market’s less-than-enthusias-
tic embrace of SPARC and bytecode-native Java chips. Al-
though Sun has licensed both of those architectures to
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several partners, they have made little impact outside of
Sun’s own servers and workstations. (One exception is
Fujitsu’s SparcLite, which is found in many digital cameras.)

Perhaps Sun’s community-source licenses—which
allow anyone to download and study chip designs for free,
paying money only for actual use—would entice more com-
panies to adopt MAJC. Sun hasn’t said whether it will offer
MAJC under community licensing, but it’s a logical step.

To help jump-start MAJC, Sun can leverage some in-
house projects. The JavaStation, a thin client for corporate
desktops, could certainly use a more powerful CPU than its
sluggish MicroSparc-II. In 1997, Sun acquired Diba, a start-
up company that designed information appliances. Since
then, Diba has been reorganized as the Consumer Technolo-
gies Group within Sun Microelectronics, making it an obvi-
ous candidate for MAJC. Sun’s PersonalJava, EmbeddedJava,
and Java 2 Micro Edition are pared-down Java platforms for
this market, requiring as little as 128K of RAM without sac-
rificing such critical features as multithreading; MAJC could
give them a valuable performance boost.

Sun must also start building an infrastructure for
MAJC. It needs embedded operating systems, compilers, and
debugging tools. Sun has its own compiler, but the company
appeared surprised when we inquired about licensing the
compiler’s back end to other tool vendors. Third-party tool
support is critical, and VLIW compilers are notoriously dif-
ficult to write.

There’s no doubt that MAJC is a highly innovative and
versatile architecture. But winning acceptance for MAJC will
require some clever sleight of hand. Embedded developers
already have plenty of capable architectures to choose from,
and MAJC competes with them all. Sun might need real
magic to convince customers that MAJC has substance and
won’t disappear in a puff of smoke.— M
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Sun is withholding details about MAJC chips until
Microprocessor Forum in October, but says it will intro-
duce the first chip next year. For more information, go to
www.sun.com/microelectronics/MAJC.
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