
© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

and assemblers, then to compilers, interpreters, emulators,
and virtual machines. Today, it’s possible (and common) for
skilled programmers to be blissfully ignorant about the
underlying hardware.

Abstraction is rising on the hardware side as well.
Engineers once designed logic by manually drawing wires
and gates. In the 1970s came the first hardware description
languages (HDL), followed by synthesis compilers. Over
time, HDLs have evolved to the point where engineers can
design processors in much the same way programmers
design software: by creating a functional description inde-
pendent of a hardware implementation. Indeed, the latest
trend is to adapt software programming languages for hard-
ware design. Eventually, this convergence will topple the wall
that separates hardware and software engineering. In the
future, someone will write code to solve a problem, and the
end product will be gates, bits, or the optimum combination
of both—perhaps generated by a single compiler.

HDLs accelerate the design process and make today’s
complex microprocessor designs more manageable. But a
side-effect of hardware abstraction is that it also makes the
softened hardware more malleable, like software. Soon after
companies began creating synthesizable models of micro-
processors, they realized that the flexibility software program-
mers had enjoyed since the 1950s was now within the reach of
hardware designers.

One of the first companies to build a business around
this discovery was ARC International (formerly ARC Cores,

an offshoot of U.K.-based Argonaut Software). ARC was an
early supplier of synthesizable intellectual property (IP) to
embedded-chip developers. According to company lore, an
ARC engineer grew weary of designing minor variations of
the same basic microprocessor for different customers. In
1993, he created a general-purpose 32-bit microprocessor
core designed to be optimized for specific applications by
the customers themselves. This innovation freed up his
weekends and in 1996 led to the first openly licensed user-
configurable microprocessor.

In 1997, some former MIPS engineers helped found
Tensilica, to compete with ARC. Tensilica created a 32-bit
microprocessor core with a graphical configuration interface
and integrated tool chain—all designed from the start to be
user customizable. The company’s first Xtensa processor
appeared in 1999.

Both ARC and Tensilica have established the validity of
the configurable-processor concept, which is actually a prin-
ciple long familiar to software programmers. By identifying
and optimizing the most critical parts of an application, it’s
possible to achieve huge gains in performance. Programmers
do it with careful coding or in-line assembly language. Now,
chip designers can do it by optimizing a configurable micro-
processor core with custom instructions and other enhance-
ments. It really works, and ARC and Tensilica have the certi-
fied EEMBC scores to prove it.

MIPS Technologies is the latest company to endorse
the concept. At Embedded Processor Forum 2002, MIPS

MIPS EMBRACES CONFIGURABLE TECHNOLOGY
Pro Series Processors With CorExtend Compete With ARC and Tensilica

By Tom R. Halfhi l l {3/3/03-01}

Ever since ENIAC, Colossus, and even the Difference Engine, the trend in computer evo-

lution has been toward higher levels of abstraction above the hardware. It is most visible

on the software side: wire patchboards and toggle switches soon led to machine language

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

introduced the M4K Pro synthesizable processor core, which
implements a revision of the MIPS32 instruction-set architec-
ture (ISA). Along with that revision, MIPS opened the door
for customers to add application-specific instructions to the
M4K. More recently, MIPS announced that all soft processors
in the Pro Series are user extendable, thanks to a technology
MIPS refers to as CorExtend. Initial Pro Series cores, in addi-
tion to the M4K, are the 4KSd, 4KEp, 4KEm, and 4KEc.

It will be no surprise if other companies jump on the
bandwagon. A soft microprocessor core should be more than
just a synthesizable version of a hard core; intuitively, some-
thing soft should be more flexible than something hard. Even-
tually, a licensable soft-IP microprocessor core that is not cus-
tomizable will seem as limited as a text editor without a macro
language or an operating system without control panels.

The ability to customize a processor is particularly
valuable in the embedded-systems market, where the diversity
of applications argues against a one-size-fits-all solution—
or even a fairly large number of off-the-shelf solutions.
Using customizable processor cores, chip designers can create

a virtually unlimited number of solutions. (See MPR
11/12/01-01, “Configurable vs. Fixed Instruction Sets.”)

Small Step, Big Leap
The first obvious question about MIPS’s new CorExtend tech-
nology is whether it matches the more-mature configurable-
processor technology from ARC and Tensilica. The short
answer is no. At this time, MIPS Pro Series cores have fewer
configurable options than do the ARCtangent-A5 or Xtensa V
cores. Furthermore, ARC and Tensilica offer better tool-chain
integration. Table 1 summarizes the features of these config-
urable processor cores.

Although MIPS Pro Series cores are less broadly config-
urable than the ARCtangent and Xtensa cores, they do have
the most important feature: an extendable instruction set.
This allows designers to leverage the familiar 80/20 rule, which
holds that 20% of a program usually does 80% of the work.
Software programmers use profiling tools to identify those
“hot spots,” then optimize the critical algorithms or inner
loops with tighter code or assembly language. Hardware

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Synthesizable Yes Yes Yes Yes Yes Yes Yes
Core HDL Verilog Verilog Verilog Verilog Verilog Verilog, VHDL Verilog, VHDL
User-Extension HDL Verilog Verilog Verilog Verilog Verilog Verilog, VHDL TIE
Configurability Medium Medium Medium Medium Medium High High
Custom Instr Slots 512 512 512 512 512 256 32,768

Multiple Reg Files Optional Optional Optional Optional Optional Optional Optional
Custom Instr Formats 0–3 operands 0–3 operands 0–3 operands 0–3 operands 0–3 operands 0–3 operands 0–4 operands
Standard Instr Length 16/32-bit 16/32-bit 16/32-bit 16/32-bit 16/32-bit 16/32-bit 16/24-bit
Custom Instr Length 32-bit 32-bit 32-bit 32-bit 32-bit 16/32-bit 24-bit
Graphical Config Tool Yes Yes Yes Yes Yes Yes Yes
Predefined Extensions No No No No No Yes Yes
DSP Extensions No No No No No Optional Optional
Config I/O Buses No No No No No Yes Yes
Config Interrupts No No No No No Yes Yes
Config Caches Cacheless 0–64K 0–64K 0–64K 0–64K 0–32K 0–32K

Config Condition Flags No No No No No Yes No
Config Endian Order Yes Yes Yes Yes Yes No Yes
Config Peripheral IP No No No No No Yes No
Fast Int Mult/Div Unit Optional No Yes Yes Yes Optional Optional
FPU No No No No No No Optional
MMU No No No Yes Yes No Optional
Config Dev Tools Yes Yes Yes Yes Yes Yes Yes

Availability Now Now Now Now Now Now Now

MIPS
4KSd Pro

ARC
ARCtangent-A5

Tensilica
Xtensa V

MIPS
M4K Pro

MIPS
4KEp Pro

MIPS
4KEm Pro

MIPS
4KEc Pro

Architecture (ISA) MIPS32
32-bit RISC

MIPS32
32-bit RISC

MIPS32
32-bit RISC

MIPS32
32-bit RISC

MIPS32
32-bit RISC

ARCompact
32-bit RISC

Xtensa V
32-bit RISC

Target Applications Gen-purpose
embedded

Gen-purpose
embedded

Gen-purpose
embedded

Gen-purpose
embedded

Smartcards,
secure data

Gen-purpose
embedded

Gen-purpose
embedded

Custom Core-Reg
Slots

0 0 0 0 0 28* 32

Multicycle Custom
Instr

Yes Yes Yes Yes Yes Yes Yes

Config Scratchpad
RAM

No Yes Yes Yes Yes Yes Yes

Tool-Chain Automation None None None None None Low High

Table 1. The first configurable processors from MIPS don’t match the competing technology from ARC and Tensilica, but they have the most vital
capability: user-defined instructions. *ARCtangent-A5 has 32 extension-register slots, but 4 are reserved.

3

designers can do the same thing by creating custom instruc-
tions that execute the critical functions in logic. Doing this can
often boost performance by an order of magnitude or more.
In other words, a little configurability goes a long way.

The big selling point for MIPS is that customers can now
license a configurable microprocessor core without having to
adopt an alien CPU architecture. In the market for 32-bit
embedded-processor cores, only ARM is more pervasive than
MIPS, and ARM has not yet embraced configurable technol-
ogy. Although ARC and Tensilica have very respectable CPU
architectures from a technical standpoint, they are less “stan-
dard” than is MIPS, one of the seminal RISC architectures
developed in the 1980s. Hundreds of universities worldwide
use the MIPS architecture as a teaching tool, and it’s strongly
supported by third-party development tools and peripheral IP.
Chips based on MIPS cores are found in everything from
smartcards and home videogame consoles to high-performance
network routers. It’s a relatively straightforward architecture,
easy to learn and use. The Pro Series cores with CorExtend are
backward compatible with this architecture.

Another selling point for MIPS is a broader range of syn-
thesizable processors. ARC and Tensilica each have only one
32-bit processor core (not counting older cores that are still
supported but are being phased out). Although not all MIPS’s
processors currently implement CorExtend, among the first
are most of the 32-bit processors, including the SmartMIPS
4KSd for smartcards and secure-data applications.

ARC and Tensilica have a good counterargument: be-
cause their processor cores are more customizable, they need
not duplicate MIPS’s closely spaced product line of 32-bit
cores. One processor is enough. If chip designers were sculp-
tors, ARC and Tensilica would be selling clay, not marble.

In the future, MIPS could broaden its product line be-
yond the range of configurability offered by ARC and Tensilica
by adding CorExtend to its 5K-series 64-bit cores, which
would make them the only 64-bit processors on the market
with extendable instruction sets. Neither ARC nor Tensilica
has a 64-bit processor core.

However, the 32-bit market is definitely the sweet spot.
Today’s embedded applications are less likely to use 64-bit
integers than other, less traditional data types—such as 24-
bit audio streams, 56- or 128-bit encryption keys, and 40-
byte packet headers. A 32-bit processor is sufficient for
those tasks.

In addition, there are other paths to
higher performance, such as multiprocessing.
ARC has customers integrating as many as 64
ARCtangent cores on a single chip. Tensilica
says 59% of its customers are designing multi-
processor chips, averaging 5.1 Xtensa cores per
design. For high-performance SIMD process-
ing, Tensilica offers its optional Vectra DSP
extensions, which have 160-bit-wide registers
and datapaths. ARC has optional DSP exten-
sions, too. For these reasons, neither ARC nor

Tensilica is likely to lose much business by ceding the specu-
lative market for configurable 64-bit processors to MIPS.

CorExtend Is Simple, Yet Effective
It has always been possible for MIPS licensees to extend the
MIPS instruction set, but doing so formerly required an archi-
tectural license instead of the more common (and less expen-
sive) core license. In 1996, for example, LSI Logic developed
the 16-bit MIPS16 instruction subset to improve code density
in embedded applications. (See MPR 10/28/96-10, “LSI’s
TinyRisc Core Shrinks Code Size.”) It’s also been possible for
MIPS licensees to add new instructions and local state regis-
ters by attaching function blocks to the coprocessor interface,
a feature of some MIPS cores. However, even MIPS now
acknowledges that the rarely used coprocessor interface is not
the ideal solution. With CorExtend, customers don’t need an
architectural license to add a few application-specific instruc-
tions to a Pro Series core.

Instead, CorExtend allows any MIPS Pro Series licensee
to readily add user-defined instructions that enjoy the same
functional status as standard MIPS instructions. MIPS has set
aside 16 major opcodes for this purpose. This opcode space is
separate from the so-called Special2 opcode field, which years
ago was reserved for architectural licensees to define new
instructions. The six-bit Special2 field occupies bits 26–31 in
the 32-bit MIPS instruction format, while the new user-
defined instruction (UDI) field occupies bits 0–5.

Within the six-bit UDI opcode field, MIPS has set aside
the first four bits for user-defined opcodes, which is enough
for 16 custom instructions. Actually, it’s possible to add
many more custom instructions, because the CorExtend
instruction format has 20 bits of user-definable encoding
space in each 32-bit instruction word. By using subcoding
techniques (which would require additional instruction de-
coding in the custom logic), designers could add as many as
16,777,216 opcodes!

We suspect most designers will be satisfied with the 16
major opcode slots. For additional instructions, MIPS sug-
gests using a user-definable five-bit field immediately follow-
ing the UDI opcode field; doing this yields a more reasonable,
but still luxurious, 512 custom opcode slots. (Four bits in the
UDI opcode field plus five bits in the undefined field equals
nine bits, or 512 slots.) Figure 1 shows the CorExtend instruc-
tion format.

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Figure 1. MIPS reserves all or part of the dark-shaded fields for opcodes. Designers can use bits
0–3 in the UDI Opcode field to create opcodes for up to 16 user-defined instructions. The
remaining 20 bits in the light-shaded fields are available to designers. These bits can encode
source and destination register addresses, immediate values, or subcodes for additional op-
codes. For instructions that use registers, MIPS suggests the layout shown above.

UDI Opcode
01xxxx

User-Interpretable Fields

Special2 Opcode
011100

Reg Field rs
(Optional)

Reg Field rt
(Optional)

31 26 25 21 20 16 15 6 5 0

6 Bits 5 Bits 5 Bits 6 Bits

Reg Field rd
(Optional)

User
Defined

5 Bits 5 Bits

1110

4

User-defined instructions can be single-cycle or multi-
cycle. Multicycle instructions can either stall the main integer
pipeline (halting all other instructions until the multicycle
instruction executes) or synchronize with the pipeline (allow-
ing other instructions to proceed while the multicycle instruc-
tion executes). Pipeline synchronization is automatic, and the
processor always checks the custom instruction’s source and
destination registers for pipeline dependencies. This is a big
advantage over function blocks attached to the MIPS
coprocessor interface, which require designers to implement
their own pipeline synchronization and dependency checking.

By default, custom instructions have a three-operand
format: two source registers and one destination register. (In
MIPS nomenclature, these are known as rs, rt, and rd.) There-
fore, custom instructions can be nondestructive: results need
not overwrite operands in the source registers. The register
specifiers are five-bit addresses, so instructions can fetch their
source operands from any of the 32 general-purpose 32-bit
registers in the standard MIPS architecture. Likewise, a cus-
tom instruction can return a 32-bit result to any of these
registers. (Figure 1 shows how MIPS suggests defining the
register fields within an instruction.) Custom instructions
cannot fetch operands directly from memory or write results
to memory; they are strictly register-to-register operations.

The three-operand format for custom instructions
appears to be comparatively rigid, but, in practice, it’s fairly
flexible. If an instruction needs only one input operand (rs), it
can simply ignore the second input operand (rt). Actually,
designers can use the 20 bits of user-interpretable fields almost
any way they want. For instance, the bits set aside for register
specifiers could encode an immediate value.

Results are assumed to be 32 bits long, but there’s wig-
gle room here, too. If a custom instruction returns a result
smaller than 32 bits, the custom logic could pad the extra
space with zeroes. If a custom instruction returns a result

larger than 32 bits, a second custom instruction could fetch
the extra bits from a user-defined local register in the custom
logic and store them in a second architectural register. (The
second custom instruction would be necessary because stan-
dard MIPS instructions can’t access user-defined registers in
custom logic.)

To add a user-defined instruction to a Pro Series proces-
sor, designers must write their custom logic in register-transfer-
level (RTL) Verilog. This logic is responsible for decoding the
instruction, handling the input operands, executing the
operation, storing any intermediate results in local state reg-
isters, and storing the final result in a core register. The Ver-
ilog models for Pro Series cores have special CorExtend
interfaces for attaching this logic. At build time, the synthe-
sis compiler tightly couples the custom-logic block to the
core’s execution unit.

Standard MIPS compilers, simulators, and other devel-
opment tools would normally be unable to recognize custom
instructions: they would either be oblivious to the instructions
or balk at what appeared to be undefined opcodes. Designers
must therefore write macros and intrinsic functions that allow
assemblers and C/C++ compilers to call the instructions, plus
dynamically linked libraries (DLL) to describe the operation
of the instructions to software simulators. MIPS provides
templates to simplify these tasks. At present, two tool chains
support CorExtend: Green Hills MULTI and MIPS’s own
MIPSsde 5.0 (a GNU-based tool suite). MULTI supports mul-
ticore debugging, and both packages work with the MIPSsim
instruction-set simulator.

Potential Gains Are Huge
When Tensilica and ARC reported their first certified EEMBC
benchmark scores in 2001 and 2002, respectively, they extin-
guished any remaining doubts about the potential of config-
urable processors. (See MPR 2/18/03-06, “Soft Cores Gain

Ground,” and MPR 4/9/01-01,
“Stretching Silicon to the Max.”) In
most cases, their optimized scores
exceed their out-of-the-box scores
by an order of magnitude or more.
At this writing, Xtensa V still holds
the record for the highest certified
EEMBC ConsumerMark score of
any processor, configurable or not.
(See MPR 9/16/02-01, “Tensilica
Xtensa V Hits 350MHz.”)

MIPS hasn’t yet published
certified EEMBC scores for the Pro
Series cores, but there’s no reason
to doubt the results will be simi-
larly impressive. ARC and Tensilica
achieved their high scores by opti-
mizing the benchmark code with a
few custom instructions, and MIPS
can now do the same. Until then,

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Figure 2. The inner loop of this algorithm can be replaced by a single custom instruction, udi.madd,
which executes in one clock cycle. Note, however, that the following line of C code requires two additional
cycles (two instances of the user-defined udi.add instruction) to fetch and concatenate the 40-bit result
from a local accumulator in the custom function block. That’s because CorExtend custom instructions can’t
return a result larger than 32 bits, and standard MIPS instructions can’t access local registers in custom logic.

short x[512], y[512];
long *px, *py;

for (px=x, py=y; px<px+512/2; px++, py++)
{udi_madd(*px, *py);}

out1 = udi_add(acc_A, r0)+udi_add(acc_C, r0);

#r2,r3 var1 and var2 (16-bit inputs)
#r16 var3 (32-bit accumulator)
#r4 a fixed value of 0x4000
mult: lui r11, 0x4000

mul r8, r9, r10
bne r11, r8, sum
sll r8, r8, 1
lui r8, 0x7fff
ori r8, r8, 0xffff

sum: addu r13, r8, r14
xor r12, r8, r14
bltz r12, end
addu r14, r0, r13
xor r12, r8, r13
bgez r12, end
nop
bltz r8, end
lui r14, 0x8000
lui r14, 0x7fff
ori r14, r14, 0xffff

end: sw r14, 0x8(r5)

Original Assembly Code

C Code with Custom Instructions

5

MIPS offers a theoretical example of what designers can do
with CorExtend. The example demonstrates how a single
custom instruction could accelerate a common algorithm in
a voice-over-Internet-Protocol (VoIP) application.

The new instruction, udi.madd (user-defined
instruction/multiply-add), performs a 16 × 16-bit multiply-
accumulate (MAC) operation. It stores the extended-precision
40-bit result in a user-defined local accumulator, with satura-
tion. A barrel shifter (also part of the custom logic) scales the
results. MIPS estimates this function block would require
15,000 to 25,000 gates, depending on the synthesis compiler.
(Without the function block, the minimum configuration of
an M4K Pro Series core is about 32,000 gates.) For even
higher performance, a designer could create a dual-MAC
instruction.

Either way, MIPS says the custom function block typi-
cally requires fewer gates than a DSP coprocessor with simi-
lar MAC instructions. In most cases, that’s true. However, the
total number of gates required for an M4K Pro core with the
custom function block is similar to that of an ARCtangent-
A5 with MAC extensions (about 55,000 gates).

Figure 2 shows the MIPS assembly-language code for the
VoIP algorithm’s inner loop, using standard MIPS instruc-
tions. The loop consists of 18 instructions (including a NOP
in a branch-delay slot) that execute in 10–20 clock cycles,
depending on the outcome of three conditional branches
controlled by input variables. To the right of the assembly-
language code, Figure 2 shows how the whole loop collapses
into a few lines of C code by calling a predefined intrinsic
function, udi.madd. That function in turn calls the custom
udi.madd instruction, which executes in a single clock
cycle—on average, 15 times faster than the original code.

Although the MIPS example is relatively simple, it’s rel-
evant to real-world applications, and the huge performance
improvement is not an isolated case. ARC and Tensilica used
similar techniques to achieve their stellar EEMBC benchmark
scores, which often exceed unoptimized scores by a compara-
ble magnitude. Indeed, ARC recently introduced telephony
extensions for ARCtangent-A5 that accelerate the same kind
of algorithms in the MIPS example, and Tensilica has
announced 64-bit VLIW extensions that a customer (Conex-
ant) is using for similar applications. (See MPR 11/25/02-06,
“FLIX: The New Xtensa ISA Mix.”)

What MIPS Left Out
For now, the most significant new feature of CorExtend is
the ability to add custom instructions without a MIPS
architectural license. Pro Series cores have other config-
urable options, but, in general, those options have been
available since MIPS introduced its first synthesizable
processors in 1999. (See MPR 5/31/99-04, “Jade Enriches
MIPS Embedded Family.”)

Depending on the core, designers can configure the
sizes and set associativity of the instruction and data caches;
choose between a fast or small multiply-divide unit; select an

MMU with or without a TLB; and configure an interface for
on-chip scratchpad RAM. The M4K is cacheless, but it has a
configurable SRAM interface with separate or unified instruc-
tion and data memory. All Pro Series cores also support up to
four duplicate register files for hardware-supported multi-
tasking. (See MPR 5/20/02-01, “MIPS’ Latest Core Goes Mul-
tiprocessor.”)

In total, MIPS offers about 40 build-time configuration
options. Most options preceded CorExtend and haven’t been
widely publicized. For instance, designers can implement
extensive clock gating to reduce power consumption, and they
can configure the trace-and-debug interfaces in several ways.
Figure 3 shows a screen from the MIPS graphical configura-
tion tool, which allows designers to rapidly configure a MIPS
core by clicking on various checkboxes.

Still, ARC and Tensilica offer more. With the ARCtan-
gent and Xtensa cores, nearly every feature of the microarchi-
tecture is customizable by the user. They allow more ways of
balancing performance, design complexity, die area, cost, and
power consumption, so they are generally adaptable to a wider
range of problems.

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Figure 3. With its synthesizable processor cores, MIPS supplies a graph-
ical configuration tool that is similar to the tools from ARC and Tensilica.

6

Consider the I/O options. ARC allows designers to im-
plement as many as four 32-bit I/O buses, with separate or
unified memory for instructions and data. Tensilica allows
designers to configure the processor I/O bus to 32-, 64-, or
128-bit widths, supplemented by an optional local-memory
interface for tightly coupled scratchpad RAM and application-
specific logic. Pro Series MIPS cores have a fixed 32-bit data
bus and the rarely used 32-bit coprocessor interface.

ARCtangent-A5 and Xtensa V each have 32 core regis-
ters, extendable to 64—twice as many as MIPS has. Except for
four reserved registers in the ARCtangent architecture, all
these 32-bit registers can be used by standard and custom
instructions, unlike the user-defined registers in a MIPS
extension. Xtensa V’s optional FPU has 16 registers, 32 bits
wide, and the optional Vectra DSP extension has 16 registers,
160 bits wide. With ARCtangent-A5, special load/store
instructions in the standard instruction set can access optional
32-bit auxiliary registers, which have a 32-bit addressing
range, allowing the addition of more than four billion regis-
ters. Xtensa V extensions can also have almost any number of
registers —although, as with the MIPS cores, they are not vis-
ible to standard instructions.

MIPS Pro Series cores do support up to four duplicate
register files, allowing fast context switching among different
tasks. However, that’s not quite the same as having more reg-
isters for a single task. Theoretically, a single task could access
multiple register files in a Pro Series core, but some extra
housekeeping would be needed, because the MIPS architec-
ture expects a program to see only 32 registers at a time. ARC

and Tensilica allow designers to add multiple register files,
too, although such an addition is not an easy configuration
option: writing HDL code is required to implement the addi-
tional register files.

User-defined interrupts with configurable priority lev-
els are another important feature of ARCtangent-A5 and
Xtensa V. So are their optional DSP extensions and flexible
instruction formats. Most ARCtangent-A5 instructions are
conditional, and users can define new condition codes that
standard and custom instructions can recognize. With the
new ARCompact ISA, designers can create 16- or 32-bit cus-
tom instructions, whereas CorExtend limits designers to 32-
bit instructions—an important consideration for memory-
challenged embedded applications.

Both ARC and Tensilica offer libraries of predefined
extension instructions, ranging from simple bit manipula-
tions to DES cryptography acceleration. ARC goes a step
further and sells configurable peripheral IP, such as USB
cores. Of course, considering how much longer ARC and
Tensilica have been in the configurable-processor business,
it’s no surprise that their products are more mature.

MIPS’s Tools Are Manual
Another shortcoming of CorExtend is the relative lack of
tool-chain automation. In this contest, MIPS is slightly be-
hind ARC, and both companies are behind Tensilica. On the
hardware side, all three companies have graphical configura-
tion tools that let designers configure the core with a few
mouse clicks. On the software side, the differences are starker:
MIPS programmers must manually write intrinsic functions
and macros to use custom instructions with the develop-
ment tools; ARC requires a similar level of effort but has
some automation for so-called “standard extensions”; and
Tensilica has significantly better automation.

Tensilica’s advantage was in starting with a blank
slate. ARC developed its configurable technology in a
piecemeal fashion by modifying a conventional design
flow, and MIPS is basically following the same course. In
contrast, Tensilica was founded as a configurable-processor
company. Instead of retrofitting an existing architecture,
Tensilica created a whole front-to-back system that auto-
matically generates software-development tools that match
the user’s hardware configuration.

An Xtensa user starts by logging onto Tensilica’s Web
site with a password and accessing the Processor Generator,
shown in Figure 4. This is a Web-based tool that presents
the configurable options for the Xtensa processor in a series
of pages with checkboxes, radio buttons, and menus. With
a few mouse clicks, users can configure the caches, buses,
interrupts, and other microarchitectural features of the
core. The Processor Generator also offers extension options,
such as predefined instructions and the Vectra DSP unit.
With each selection, a real-time status display estimates the
gate count, clock frequency, die area, and power consump-
tion of the current processor configuration.

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Figure 4. Tensilica’s Processor Generator is a Web-based graphical config-
uration tool for the Xtensa V processor core. Note the continuously
updated status display at the bottom.

7

After selecting all their options, users click a button
that sets the back-end part of the Processor Generator into
motion. At Tensilica’s site, the Processor Generator builds a
model of the user’s configuration in RTL Verilog or VHDL
(another user option) and sends it back across the Internet
to the user’s site. In addition to the processor core, users
also receive preconfigured synthesis scripts, test benches,
and software-development tools. The software tools in-
clude an assembler, C/C++ compiler, linker, debugger, and
instruction-set simulator already modified to match the
hardware configuration.

To create custom instructions, Xtensa users write a
functional description of the custom logic in the Tensilica
Instruction Extension (TIE) language, a proprietary HDL
that resembles Verilog. TIE has special semantics that allow
the back-end Processor Generator to automatically modify
the software-development tools so they can recognize and use
the new instructions. The Processor Generator also converts
the TIE code into RTL Verilog or VHDL and integrates it with
the RTL model of the Xtensa core. Users can compile the RTL
files with an industry-standard synthesis tool and target any
fabrication process of their choice.

ARC’s design flow is more conventional and less auto-
mated. As Figure 5 shows, the ARChitect graphical configura-
tion tool resembles Tensilica’s Processor Generator and offers
similar options for the ARCtangent-A5 processor. One impor-
tant difference is that ARChitect allows users to configure and
integrate ARC’s peripheral IP, such as a USB controller core,
while they’re configuring the processor. When a user clicks the
“Go” button, ARChitect builds an RTL model of the
processor to the user’s specifications by assembling
prewritten Verilog or VHDL files, and it generates
preconfigured synthesis scripts and test benches.

To supplement ARChitect, ARC recently intro-
duced a new Extension Instruction Automation
(EIA) tool. It lets developers create packages of cus-
tom extensions, which may include new instructions,
core registers, auxiliary registers, and condition codes.
These packages are then available from ARChitect. By
using the EIA tool to build a library of packages,
developers can manage their custom extensions sepa-
rately from individual projects and more easily reuse
the extensions in multiple projects.

Like Tensilica’s Processor Generator, ARChi-
tect also offers some predefined extension options,
such as additional instructions and DSP extensions.
ARC refers to the predefined instructions as “stan-
dard extensions,” and programmers can use them
without writing the assembler macros or C/C++
intrinsic functions normally required for extension
instructions. ARC’s software-development tools
include the MetaWare assembler, High C/C++ com-
piler, linker, debugger, and instruction-set simulator.
ARC also provides a cycle-accurate simulator, signal-
visualization tools, a configurable real-time operating

system (RTOS), communication protocol stacks, and other
system software designed to work with its processor.

For user-defined instructions, ARC’s design flow has
more in common with MIPS’s flow than with Tensilica’s.
ARC users write their custom logic in Verilog or VHDL, not
a proprietary language like TIE, and integrate their RTL code
with the ARCtangent-A5 core by hooking into predefined
interfaces provided for that purpose. ARC’s new EIA tool
includes an HDL editor, and custom extensions created with
this tool become available in ARChitect, which simplifies the
task of extending the core. To use the new instructions with
the software-development tools, programmers must write
macros for the assembler, intrinsic functions for the C/C++
compiler, and DLLs for the software simulators. Like MIPS,
ARC provides templates to make these tasks easier.

The final design step is much the same for ARC, MIPS,
or Tensilica: users compile the RTL model with an industry-
standard synthesis tool that targets the chip-fabrication
process of their choice. All three companies trumpet process
portability as a strength of their products.

Don’t Sweat the Software Tools
As the preceding analysis shows, Tensilica offers the highest
degree of design automation, although one trade-off is that
users must learn Tensilica’s proprietary TIE language. ARC
comes in second, providing a graphical configuration tool
like Tensilica’s, an extension-management tool, some tool-
chain automation for standard extensions, and (uniquely)
the option to integrate some sophisticated peripheral IP

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

Figure 5. ARC’s graphical ARChitect tool lets users configure the ARCtangent-A5
processor core and integrate some peripheral IP. Notice the continuously updated
status display at the lower left.

8

while configuring the processor. MIPS, the newbie in this
club, finishes third: it has a graphical configuration tool for
the processor but no software tool-chain automation and
no options for integrating peripheral IP.

However, in the real world of ASIC and SoC develop-
ment projects, the differences in software tool-chain automa-
tion among ARC, MIPS, and Tensilica are relatively minor.
With any customizable processor, the real work isn’t in con-
figuring the software-development tools to recognize custom
instructions—it’s in creating the custom instructions to
begin with.

First, developers must determine whether custom logic
will provide a large enough increase in performance to justify
the extra design and verification effort. Usually, this takes
many hours of code profiling and analysis. It’s really a process
of hardware/software partitioning, because there may be sev-
eral ways to implement critical algorithms or functions in
various combinations of logic gates and software.

Next, developers must create the custom logic in Ver-
ilog, VHDL, or TIE and integrate it with the processor core.
They must then test and verify the whole design. The final
step of configuring the software-development tools—even if
it requires manually writing an intrinsic function and DLL
for each new instruction—is almost trivial compared with
these other tasks.

In fact, by following the project leader’s design specifi-
cations, a programmer can configure the software tools in a
few hours, even before the hardware engineers have written
their first line of HDL code. Programmers can begin writing
the application software and testing it on simulators in paral-
lel with the hardware flow of the project. Given the turn-
around time for spinning silicon, they will probably finish the
software before the chip is ready.

If an unusually large project requires several dozen cus-
tom instructions, the task of manually configuring the soft-
ware tools could become more significant. Larger projects
multiply the chances for errors. For instance, if a DLL that
describes the operation of a new instruction to the simulator
varies from the HDL implementation of the instruction, then
the simulator may not produce correct results. Today, few
developers add more than a dozen instructions to a cus-
tomizable processor, so the projects are manageable. In the
future, as embedded applications grow more complex, that
could change.

Still, the larger development risk will probably always be
the silicon, not the software. Therefore, the relative degree of
tool-chain automation shouldn’t drive the decision about
which of these configurable processors is the best choice for a
particular project.

Read the Fine Print
One potentially important difference among the configurable-
processor technologies from ARC, MIPS, and Tensilica is
legal, not technical: the ability of developers to protect the
extensions they create.

ARC and Tensilica let their customers fully protect inde-
pendently developed IP, even to the point of not disclosing it.
Indeed, at least one company using the ARC processor
(Cisco) has patented its custom extensions. MIPS says it will
likewise respect the independent ownership of third-party IP.
But MIPS adds that it reserves the right to defend the in-
tegrity of the MIPS architecture by preventing other compa-
nies from using CorExtend to create their own ad hoc versions
of the ISA. According to MIPS, that defense could take the
form of absorbing third-party instructions into the standard
ISA. A clause in the license contract reserves this right for
MIPS, even if the licensee patents the extensions.

That’s a stark difference from the policies of ARC and
Tensilica, and it could cause discomfort for some CorExtend
licensees. If MIPS decides to absorb a customer’s extensions
into the standard ISA, those extensions would become avail-
able to all MIPS licensees—including competitors of the
company that developed the IP. This policy would seem to
discourage third parties from developing IP that contains
proprietary algorithms or other unique technology.

MIPS says its architectural licenses have long included a
similar clause, and it’s never been a problem. The real issue,
says MIPS, is preventing a renegade licensee from “hijacking”
the MIPS architecture by creating a nonstandard ISA, which
could hurt the whole MIPS community. It’s difficult to see
how this could happen, though, because the CorExtend
license also forbids customers from sublicensing their exten-
sions without going through MIPS. That restriction should
be enough to stop a licensee from spreading a nonstandard
ISA beyond the pins of its own chips.

There is a remote possibility that chips with a nonstan-
dard ISA (that is, chips based on a MIPS core with custom
extensions) could become so popular in the marketplace that
software vendors might overwhelmingly support it, to the
detriment of chips based on the standard MIPS ISA. To our
knowledge, hijacking the ARCtangent or Xtensa architectures
in this or any other way has never been tried, but perhaps it’s
because they are less popular than the MIPS architecture.
Although Lexra once posed a threat to MIPS by licensing a
workalike architecture, that situation was different, because
Lexra wasn’t originally a MIPS licensee.

A more relevant historical example is the legal entangle-
ment that once encumbered the MIPS16 instruction subset.
When MIPS introduced its first synthesizable embedded-
processor cores in 1999, the processors conspicuously omit-
ted MIPS16, even though code compression is valued by many
embedded-system developers. There was no technical reason
for the omission, because it was equally conspicuous that some
of Lexra’s unsanctioned MIPS-like cores supported MIPS16—
which, in effect, threatened to splinter the MIPS ISA.

At the time, MIPS vaguely alluded to legal issues that
blocked it from using MIPS16. Apparently MIPS and LSI
Logic resolved those issues, because some of the more recent
MIPS processor cores do support MIPS16 or its enhance-
ment, MIPS16e. Under the terms of the CorExtend license,

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

9

MIPS could head off any future splintering by simply absorb-
ing third-party extensions into the standard ISA.

MIPS may be correct in indicating that CorExtend
licensees will tolerate this provision, just as architectural
licensees apparently do. But even if the provision doesn’t dis-
courage licensees from embedding their proprietary IP in
custom instructions, it could impede the flowering of a free
market in third-party extensions. That’s because the CorEx-
tend license doesn’t allow MIPS customers to sublicense their
extensions directly to other companies without the approval of
MIPS. Although this arrangement eliminates another way a
licensee might fracture the architecture, it undermines a key
advantage MIPS has over ARC and Tensilica: a more popular
CPU architecture that’s capable of attracting more third-
party support.

A few years ago, ARC tried to encourage third parties to
develop and sell proprietary IP for the ARCtangent processor,
following the model of plug-in software modules for Web
browsers and other PC software. The bait was a special low-
cost design license that included documentation and tech
support. (See MPR 6/19/00-03, “ARC Cores Encourages
‘Plug-Ins.’”) Unfortunately for ARC, few (if any) third parties
snapped up the bait, probably because the relatively small
market for ARCtangent-specific IP didn’t justify the cost of
developing it. Tensilica faces the same obstacle.

Because the MIPS architecture is more widespread than
ARC’s or Tensilica’s, it’s easy to envision a lively market of
third-party extensions for MIPS processors. However, that
market won’t be as free to flourish if third parties can’t fully
protect their IP and license it without involving MIPS as a
middleman.

The legal fences surrounding CorExtend indicate that
MIPS’s highest priority is maintaining full control over the
MIPS architecture—even at the cost of deterring some third-
party development. It’s a tough business decision that can be
argued either way. In any case, MIPS has elected to follow a
different path in this regard than have ARC and Tensilica.

Pondering CorExtend’s Future
Nobody could reasonably expect MIPS to duplicate overnight
the years of effort by ARC and Tensilica. Delivering a complete
system for customizing a microprocessor requires much more
than simply allowing users to modify an RTL model, which
is why the open-source or freely licensed processor cores

appearing in recent years haven’t seriously threatened ARC
and Tensilica. But even if CorExtend doesn’t duplicate every
feature of the competing technology, it does achieve MIPS’s
initial goal: to deliver the powerful flexibility of an extendable
instruction set on a more-popular CPU architecture.

What’s next? The most obvious improvement would be
more processor-configuration options, all available in the
graphical configuration tool. Customizable I/O buses and
interrupts would be nice to have. So would a library of prede-
fined instructions for accelerating the kinds of tasks MIPS
developers frequently encounter. We would also like to see con-
figurable DSP extensions, like those offered by ARC and Ten-
silica, surely something MIPS could salvage from the wreckage
of Lexra. (See MPR 8/23/99-05,“Lexra Adds DSP Extensions.”)

Better tool-chain automation would help counter Ten-
silica’s effective marketing of this feature, but MIPS could run
into some legal obstacles here. Tensilica recently won two
U.S. patents for its system of automatically generating a cus-
tomized processor with matching software-development
tools. In those patents, Tensilica makes broad method claims
that could limit MIPS’s future options. (See MPR 12/9/02-01,
“Tensilica Patents Raise Eyebrows.”)

ARC’s patent claims could also prove troublesome for
MIPS, as well as for other newcomers. ARC holds at least three
international patents and has 39 patent applications pending
in various regions around the world. Those applications
should start issuing within a year. In its present state of devel-
opment, though, CorExtend doesn’t appear to trample on any
patented IP from ARC or Tensilica, nor on any pending
patents we know about.

CorExtend is further proof that configurable-processor
technology is coming of age. ARC and Tensilica have blazed
the trail, and now this technology is attracting the attention
of more-established companies like MIPS. In time, ARM will
almost certainly follow. The rewards for making hardware as
malleable as software are becoming too great to ignore.

© I N - S T A T / M D R M A R C H 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

MIPS Embraces Configurable Technology

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

P r i c e & Av a i l a b i l i t y

The MIPS M4K and other Pro Series processor cores with
CorExtend are available now. MIPS does not publicly dis-
close license fees.

