
© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

to the tool chain for its Xtensa configurable-processor
architecture. A new code-analysis and hardware-generation
tool—so new it doesn’t have a catchy name—automatically
creates processor extensions that accelerate critical func-
tions in C/C++ source code. Custom extensions can include
new instructions, registers, and function units. In minutes,
the tool can evaluate thousands of possible extensions and
sort them by performance (clock cycles) and efficiency (gate
count). When a developer selects the optimal design for the
target application, the tool automatically generates the ex-
tension in Tensilica’s proprietary hardware design language
and integrates it with the Xtensa processor core, ready for
logic synthesis.

In addition to creating processor extensions, the new
tool links into Tensilica’s existing tool chain, which automati-
cally generates a C/C++ compiler, assembler, debugger, cycle-
accurate software simulator, and real-time operating system
(RTOS)—all tailored for the customized processor. The com-
piler automatically uses the new custom instructions to
accelerate the application program without modifying the
original C source code. And when the tool ships next year, it
will plug into the new Xtensa Xplorer integrated development
environment (IDE) that Tensilica announced on June 16.
(See sidebar, “Xtensa Xplorer Unites Tool Chain.”)

We are aware of no other configurable microprocessor
or tool chain that approaches this level of design automa-
tion. The configurable processors from ARC International
and MIPS Technologies allow developers to create custom

extensions for accelerating software, and code-profiling tools
help programmers identify the most critical routines and
inner loops. However, someone must still write the VHDL or
Verilog code for the custom extensions and integrate it with
the processor core. To evaluate alternative implementations
of an extension, developers must manually create the exten-
sions and test them, one by one, in a cycle-accurate simula-
tor. In most cases, developers must also modify the software-
development tools before using a custom extension, and they
must write intrinsic functions to use the new instructions in
their application code.

In less time than it takes for a single iteration of that
labor-intensive process, a developer using Tensilica’s new
system will be able to explore thousands of possible exten-
sions, generate the optimal choice, modify all the software-
development tools, and recompile the application with opti-
mized instructions.

Tensilica’s new tool has the potential to dramatically
change SoC development. Hardware/software partitioning—
physically dividing an application between functions per-
formed in logic and functions performed by code—has never
been easier. It’s a significant step toward a unified design
methodology that is application-centric, not hardware- or
software-centric.

A New Link in the Chain
Tensilica’s new auto-generation tool doesn’t alter the basic
design flow or tool chain the company introduced with its

TENSILICA’S SOFTWARE MAKES HARDWARE
New Tool Customizes Processor by Analyzing C/C++ Code

By Tom R. Halfhi l l {6/23/03-01}

Since the dawn of computing, programmers have been writing software to suit the

hardware. What choice did they have? Code is flexible; metal is not. Until now.

At Embedded Processor Forum 2003 last week, Tensilica unveiled an impressive addition

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

first Xtensa configurable processor in 1999. As before, devel-
opers begin by configuring the base configuration for the tar-
get application by using Tensilica’s special design tools. Devel-
opers can choose from a variety of prefab options, such as
16- and 32-bit multipliers, a 32-bit floating-point coprocessor,
and a 16-bit multiply-accumulate (MAC) extension. For fur-
ther optimizations, developers can create custom extensions
with the Tensilica Instruction Extension (TIE) language, a
proprietary hardware description language (HDL).

After configuring and customizing the core, develop-
ers send their design over the Internet to Tensilica’s web-
based Processor Generator, which converts the processor
and user-defined TIE extensions into register-transfer-level
Verilog or VHDL. The Processor Generator also creates syn-
thesis scripts and modifies the software-development tools
to match the processor’s customized instruction set. After

testing the design in the cycle-accurate software simulator,
developers can generate a gate-level netlist with their own
synthesis compiler, targeting a fabrication process and
foundry of their choice. Meanwhile, programmers can work
on their application software by using Tensilica’s Xtensa
C/C++ Compiler (XCC) or a modified GNU compiler. This
basic design flow is common to all Tensilica Xtensa cores,
including the current Xtensa V, introduced last year. (See
MPR 9/16/02-01, “Tensilica Xtensa V Hits 350MHz.”)

What’s changing is the crucial step of creating new cus-
tom extensions. This is the feature that sets customizable
processors apart from other synthesizable processor cores,
and it’s the reason they can leapfrog the performance of com-
peting processors. (See MPR 4/9/01-01, “Stretching Silicon to
the Max.”) Until now, Xtensa developers had to manually
write all their custom extensions in TIE language. Tensilica’s

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

In addition to unveiling the automatic TIE generator at
Embedded Processor Forum, Tensilica has announced a new
IDE that will give hardware and software developers a com-
mon tool platform for designing Xtensa-based SoCs. The
IDE, known as Xtensa Xplorer, will host Tensilica’s full range
of hardware- and software-development tools as plug-in
components. The TIE generator will join those components
when it ships next year.

Tensilica built Xplorer on the Eclipse IDE, an open-
source project backed by a consortium consisting of Tensilica,
IBM, Intel, Oracle, QNX, SAP, Wind River Systems, and other
companies. Eclipse is a generic IDE written in Java that isn’t
specific to any particular programming language, processor
architecture, operating system, or hardware platform. Plug-in
tools adapt it for different purposes. IBM is using Eclipse to
host a Java software-development environment; Tensilica is

using Eclipse to host its C/C++ compilers, Xtensa assembler,
TIE compiler, TIE generator, and other tools.

Although Eclipse is an open-source project, it requires
a commercial public license (CPL) instead of the more com-
mon GNU public license (GPL). Companies like Tensilica say
the CPL offers more protection for the proprietary code they
add to the open-source code. (For more information about
Eclipse and CPL, visit www.eclipse.org.)

Even more than Tensilica’s previous tools, Xplorer blurs
the boundary between hardware and software SoC develop-
ment. Using a single IDE, developers can write an application
program in C, C++, or assembly language, design custom
instructions for an Xtensa processor in TIE language, compile
the TIE instructions on a desktop workstation, use the custom
instructions in the application code, compile or assemble the
program, test it in a cycle-accurate simulator, and observe the

results. In a few hours, developers can test
many variations of custom extensions before
settling on their optimal choice.

Only when the extensions are finished is
it necessary to submit the design to Tensilica’s
online Processor Generator to compile the TIE
code and Xtensa core into RTL Verilog or
VHDL for synthesis with a logic compiler. Post-
poning logic synthesis is an advantage when
developing extensions, because Xplorer’s local
TIE compiler and cycle-accurate simulator are
much faster than a logic compiler and gate-
level simulator.

New tools in Xplorer make it easier for
developers to evaluate the performance and
efficiency of their custom extensions. One
tool analyzes TIE code to estimate (within

X t e n s a X p l o r e r U n i t e s To o l C h a i n

Xplorer’s Pipeline Viewer helps developers tune their custom extensions and application
code for Xtensa’s five-stage pipeline. The disassembled code is on the left, and the let-
ters on the right represent pipeline stages: instruction fetch (I), register access (R), exe-
cute (E), memory access (M), and writeback (W). A dot in a pipeline stage indicates a stall. Continued on Page 3

3

new TIE generator, scheduled to ship early next year, will
eliminate or greatly reduce the manual labor required.

The first phase is to compile an application program
with XCC, using a new optimization flag. This flag tells the
compiler to suggest ways of tuning the C/C++ source code for
higher performance and better TIE generation. (Sloppy
source code is more difficult to optimize and leads to ineffi-
cient gate-level logic—garbage in, garbage out.) The compiler
produces a wealth of information about the program, ranking
regions of code by their frequency of execution, identifying
loops that lend themselves to vector operations, drawing data-
flow graphs for critical routines, and counting the occurrences
of different types of opcodes in every code region.

Of course, this code-analysis phase assumes the appli-
cation software is available before hardware development
begins. In many cases, the hardware developers and software

programmers work on their respective parts of a project in
parallel, posing a potential chicken-and-egg problem. How
can the hardware developers create custom extensions to
optimize a software application that may not exist yet?

One answer is that the entire software application
need not be finished before this kind of code analysis is per-
formed. For instance, high-level user-interface code usually
isn’t the target of processor optimizations. Instead, custom
extensions generally accelerate the critical algorithms or
inner loops that are more vital to the program’s operation.
JPEG compression/decompression routines, encryption
algorithms, and network-protocol stacks come to mind, and
they may be the first parts of the program that developers
write or obtain from a third party.

In other cases, the software may be finished but doesn’t
run fast enough on a standard-part embedded processor. Or

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

10–20%) how many gates an extension will need—no logic
synthesis required. Another tool, shown in the figure below,
lets developers step through a section of disassembled appli-
cation code while observing how the instructions flow
through Xtensa’s five-stage execution pipeline. This hybrid
hardware/software tool allows developers to analyze critical
sections of their programs, especially the code that uses cus-
tom instructions. By modifying the TIE code for a custom
instruction, developers may be able to reduce or eliminate
unexpected pipeline bubbles and stalls.

Other Xplorer tools are more focused on hardware
design, although they also provide important feedback to
software developers. One example, shown in the figure
below, is the Cache Xplorer, which analyzes the
way a program uses the processor’s instruction
and data caches. It displays a graph that can show
at a glance whether, for instance, a 16K two-way
set-associative cache is better for the application
than an 8K four-way set-associative cache.
Dozens of different cache configurations are pos-
sible with an Xtensa processor, so the Cache
Xplorer makes it easier to find the smallest config-
uration that yields the best performance.

Another Xplorer plug-in is a tool for design-
ing multicore SoCs. It helps developers manage
local and global memory maps and test their chip-
level designs in simulation. Tensilica says the aver-
age Xtensa-based SoC has at least five processor
cores, so this is a valuable feature.

Xplorer works with a new revision of TIE that
streamlines the design of custom extensions. It’s a
higher-level, more-abstract version of the language
that automatically handles some low-level details.
For instance, developers can create custom instruc-
tions without specifying the opcodes, and they can
define new register files without manually creating

custom load/store instructions to access the registers. The
TIE compiler assigns opcodes and creates any necessary
load/store instructions automatically. (Without the addition
of special load/store instructions, Xtensa’s instruction set
cannot access user-defined registers beyond the maximum
of 64 core registers.) Flexible opcode assignments will make
it easier to integrate extensions from different development
teams and third-party IP providers without conflicts in the
opcode map.

Tensilica will release Xplorer in July and immediately
ship it to all current Xtensa V licensees. It will be the stan-
dard IDE for future customers, though most of the plug-in
tools require an extra-cost seat license.

Visual graphs of simulated cache behavior allow developers to experiment with
different configurations of Xtensa’s instruction and data caches. In this example,
cache misses nosedive when a direct-mapped 4K instruction cache is improved
with two-way set associativity.

4

perhaps the software runs fast enough, but only at a clock
frequency that pushes power consumption beyond the pro-
ject’s specification. To achieve the necessary performance
within the specified power envelope, the hardware develop-
ers must design an SoC around a configurable processor core
with custom extensions. They need to analyze the C/C++
source code before partitioning the application into hard-
ware and software components.

If none of these examples applies and the software
simply isn’t ready yet, then Tensilica’s new TIE generator
isn’t very useful. The project stalls until the programmers
write enough code to begin a meaningful analysis. However,
that would happen anyway if the hardware developers were
creating the custom extensions manually. Configurable
processors are predicated on the assumption that develop-
ers know enough about their application to design an intel-
ligent configuration. Rarely are developers so lost in the
dark that they can’t make an educated guess about which
will be the most critical parts of their application.

Making a Silk Purse From C Code
There are three broad techniques for improving the per-
formance of an application with TIE: fusing two or more
related operations into a single instruction; using SIMD
instructions to vectorize data-intensive operations; and
grouping together multiple independent operations using
Tensilica’s VLIW-like Flexible-Length Instruction Xtensions
(FLIX). The automatic TIE generator can use any of those
techniques or a combination of them.

Instruction fusion is the most straightforward method.
A simple example is an addition followed by a shift, as seen
in this fragment of C source code, which adds each element
of two arrays and shifts each result two bits to the right:

int *a, *b, *c;
for (int i=0; i<n; i++)

c[i] = (a[i]+b[i]) >> 2;
Each iteration of this loop requires two arithmetic

instructions (the add and the shift), two loads, one store,
and three instructions to increment the address pointers
into the arrays—eight machine-code instructions in all.
Fusing the add and shift operations into a single instruction
will speed up the loop. When the TIE generator analyzes this
source code, it creates in TIE language a new instruction
called add_shift:

operation add_shift(out AR c, in AR
a, in AR b)

{wire t[31:0] = a+b;
assign c = {2{t[29]}, t[29:0]};}

The add_shift instruction adds the two input
operands (a and b, the array elements in the program),
holds the sum as a temporary 32-bit value (t), right-shifts
the value by two bits, and returns the result (c).

With Tensilica’s existing tools—and with the tools for
other configurable processors—a programmer must modify
the C source code by creating an intrinsic function that calls

the newly defined instruction. The modified source code
would substitute the function call (which actually tells the com-
piler to invoke the new instruction) in the body of the loop:

int *a, *b, *c;
for (int i=0; i<n; i++)

c[i] = add_shift(a[i], b[i]);
However, Tensilica’s TIE generator and improved tool

chain will eliminate that manual step. Merely recompiling
the application with XCC will automatically generate
machine code that optimizes the loop with the new instruc-
tion. The source code doesn’t have to change.

The separate add-and-shift operations in the original
loop required two clock cycles to execute, whereas the fused
add_shift instruction executes in a single cycle, thus sav-
ing one clock cycle per loop iteration. In addition, the proces-
sor must fetch only one instruction instead of two. If the
array is large, or if the program frequently executes this loop,
the performance improvement could be significant, even
with this simple example.

Vectorizing With SIMD
A more sophisticated optimization technique is SIMD, or
data vectorization. When Tensilica introduced Xtensa V last
year, the company trumpeted XCC’s ability to automatically
vectorize some data-intensive operations when compiling
C/C++ source code for the processor’s optional Vectra DSP
extension. Now the TIE generator is using the same intelli-
gence to find opportunities for vectorization and to imple-
ment the vector operations as custom instructions in TIE
language. Consider the following example of C source code,
which is similar to the previous one:

short *a, *b, *c;
for (int i=0; i<n; i++)

c[i] = a[i]+b[i];
To simplify this example, the array elements are 16-bit

integers instead of 32-bit integers, and there’s no shift after
the add. (The tool can vectorize code that uses 8-, 16-, or 32-
bit integer or floating-point values as well as custom data
types, such as 24-bit fractional values.) The TIE generator
will optimize this loop by creating a new four-way SIMD
instruction called add16x4 and a new SIMD data type called
vec, which packs four 16-bit integers into a 64-bit register:

regfile vec 64 16 v;
operation add16x4(out vec c, in vec

a, in vec b)
{assign c = {a[63:48]+b[63:48],

a[47:32]+b[47:32],
a [3 1 : 1 6] + b [3 1 : 1 6] ,

a[15:0]+b[15:0]};}
The first line of TIE code creates a new 64-bit vector

register set and associated C data type; the next line defines
the new instruction and parameter list; and the third line
performs four additions in parallel, using the input
operands (a and b), and returns the result (c). Implicitly,
this line also directs the logic-synthesis compiler to replicate

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

5

enough function units to execute the SIMD instruction in a
single clock cycle.

As with the previous example, XCC will automatically
use the new instruction to optimize the loop after recompil-
ing the program. With the existing tool chain, a program-
mer would have to modify the C source code by calling the
new instruction as an intrinsic function and changing the
loop increment from a single-step walk through the arrays
to a four-step hop.

Although the add16x4 instruction doesn’t execute any
faster than an ordinary add instruction—both require one
clock cycle—it’s a four-way SIMD operation,
so it performs four adds during that cycle.
(Xtensa V supports two-, four-, and eight-
way SIMD operations, and wider operations
are possible by further customizing the
processor.) As with the fusion example,
SIMD can significantly boost performance if
the arrays are large or frequently summed.

It’s unreasonable to expect the TIE-
generation tool to identify every opportunity
for vectorization, but it will have a better
chance if programmers optimize the pro-
gram in ways suggested by the XCC profiler.

Quick, Henry, the FLIX!
Another technique for accelerating soft-
ware with TIE language is to combine mul-
tiple operations into a long instruction
word, using FLIX. This unusual capability
allows developers to define their own 32- or
64-bit VLIW bundles containing one or more instructions.
The instruction lengths are extremely flexible. In an exam-
ple presented at last year’s Microprocessor Forum, Tensilica
showed how to pack nine instructions into a 64-bit bundle,
using odd instruction lengths, including some five-bit cus-
tom instructions. FLIX can greatly improve code density,
already a strong point of the Xtensa architecture. (See MPR
11/25/02-06, “FLIX: The New Xtensa ISA Mix.”)

With Tensilica’s existing tool chain, developers must
manually create their FLIX extensions in TIE language. The
new TIE generator can create FLIX bundles automatically.
Here’s the same C source code seen earlier in the fusion
example:

int *a, *b, *c;
for (int i=0; i<n; i++)

c[i] = (a[i]+b[i]) >> 2;
This time, instead of fusing the add and shift operations

into a single instruction, the TIE generator optimizes the loop
by creating three-instruction FLIX bundles. To do this, it must
define the FLIX format and specify which kinds of instruc-
tions the compiler can schedule in each instruction slot. Here
is the TIE code automatically generated from the C code:

length l 64 {InstBuf[3:0] == l4}
format f l

slot slot0 f[*] l32i, s32i, nop
slot slot1 f[*] add, srai, nop
slot slot2 f[*] addi, nop
The first two lines of TIE create the new 64-bit-wide,

three-slot FLIX format. The next three lines list the instruction
types allowed in each slot. Note that l32i and s32i are 32-
bit load and store instructions, respectively; srai is a shift-right
instruction; and each slot must be able to hold a null operation
if dependencies prevent the compiler from scheduling a useful
instruction in that slot. Implicitly, the TIE code also directs the
logic-synthesis compiler to replicate function units or add

ports to the register file as necessary, so the
processor can execute each VLIW bundle in a
single clock cycle. (In other cases, the TIE
generator has the capability to define VLIW
bundles that execute in multiple cycles.)

As with the previous optimization
examples, programmers don’t have to
modify the application’s C source code.
XCC automatically uses the newly defined
VLIW bundles to optimize the loop. Here is
the disassembled code:

loop:
{addi a9,a9,4; add

a12,a10,a8; l32i a8,a9,0}
{addi a11,a11,4; srai

a12,a12,2; l32i a10,a11,0}
{addi a13,a13,4; nop;

s32i a12,a13,0}
Because the customized Xtensa proces-

sor can execute each of these VLIW bundles
as a single-cycle pipelined instruction, each loop iteration now
requires only three clock cycles. That’s more than twice as fast
as the unoptimized processor, which must execute eight
instructions to grind its way through each pass of the loop.

Evaluating Options for Extensions
As shown by the examples, Tensilica’s TIE generator can use
three different techniques to accelerate substantially the
same code in a program. It can also combine techniques,
usually by pairing instruction fusion with SIMD or FLIX.
But which technique or combination is best? The quandary
grows when modifying a real application of any appreciable
size, because the TIE generator could find thousands of
code fragments to optimize, and it can explore thousands of
different extensions.

Without human intervention, the TIE generator will
use XCC’s profiling information to automatically optimize
those sections of the program it deems most important.
Developers can exercise control over this process by choos-
ing which parts of their programs to optimize and which
optimization techniques to apply. Figure 1 shows a screen
from the TIE generator in which developers can pick indi-
vidual functions in a C program and specify options for the
fusion, SIMD, and FLIX techniques.

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

Tensilica’s Dror Maydan, director of
software development, presenting
at EPF2003.

R
O

SS
 M

EH
A

N

6

There are three main factors to consider when evaluat-
ing custom extensions: performance, power consumption,
and die area. Higher performance comes at the expense of
more gates and power. Fewer gates save silicon and reduce
power at the expense of performance. To make it easier for
developers to balance those trade-offs, Tensilica provides a
graphical tool that plots a range of automatically generated
extensions according to their degree of acceleration and the
additional gates they will add to the processor core. Devel-
opers can adjust these ranges to span the performance re-
quirements and gate-count budgets of their projects.

Figure 2 is a sample screen display using this tool. The
vertical scale plots the degree of acceleration from 1× to 9×,
and the horizontal scale plots the number of gates from 0 to
75,000. Note that the graphed line shows only the tip of the
iceberg—each data point represents the best performance
for one automatically generated extension with a particular
number of gates. Below the line are thousands of invisible
data points representing other possible extensions that are
worse by one measure or the other.

As Figure 2 shows, the number of additional logic gates
required for a custom extension can vary over an extraordi-
nary range—in this case, from 300 to 74,000. The reason is
that some acceleration techniques are more logic-intensive
than others, depending on the task being optimized. The
instruction-fusion technique usually has the smallest effect on
the gate count. Indeed, it’s so efficient that every variation of
the extension plotted in Figure 2 uses fusion in combination
with other techniques. Lavish use of SIMD and FLIX rapidly
inflates the gate count, because they must replicate arithmetic
function units and load/store units to support parallel opera-
tions. Sometimes those techniques add new registers or new
ports to existing registers, as well. Table 1 shows the numbers
behind the data points plotted in Figure 2.

The fastest extension in this group is three times larger
than the Xtensa V processor core it extends, illustrating how
dramatically the gate count (and therefore the die area and

power consumption) can rise if the developer’s goal is max-
imum performance. It’s tempting to blame the gate inflation
on the TIE generator, which one might assume is no better
at generating tight HDL code than some software compilers
are at generating tight object code. Although that’s probably
a factor, huge custom extensions are not uncommon with
configurable processors, even when they are designed by
expert engineers. When Tensilica optimized Xtensa V for
EEMBC’s consumer benchmark suite last year, the beefed-
up processor tipped the scales at 263,000 gates—more than
10 times the size of the base configuration.

In addition to consuming more power and silicon,
larger configurations will have difficulty reaching higher
clock frequencies, owing to the extra gate delays and longer
(and more convoluted) signal paths. Remember, Xtensa V is
synthesizable as well as configurable, so the automatically
generated TIE code eventually passes through a logic com-
piler and a place-and-route tool before materializing as actual
transistors and wires on a chip. From start to finish, there are
multiple levels of design automation that introduce their own
inefficiencies compared with a manually optimized processor
and hand-packed circuit layout. The 25,000-gate Xtensa V
base configuration could hit 400MHz when fabricated in a
0.13-micron CMOS process, whereas the 263,000-gate heavy-
weight that Tensilica designed for the EEMBC consumer suite
was huffing and puffing to reach 260MHz.

Nevertheless, developers may be happy to trade
gates—even tens of thousands of gates—for the benefits of
a processor with application-specific extensions. At
260HMz, the 263,000-gate Xtensa V configuration racked
up the highest EEMBC ConsumerMark score ever seen, sur-
passing even a 1GHz PowerPC processor. Higher perform-
ance at a lower clock frequency saves power, despite the
extra gates. Moreover, in a 0.18- or 0.13-micron fabrication

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

Figure 2. Tensilica’s graphical evaluation tool shows how different
variations of the same custom extension can achieve different degrees
of acceleration, depending on the gate count. Developers can choose
the extension that makes the most sense for their project.

Figure 1. Tensilica’s IDE allows developers to focus on critical func-
tions of C/C++ programs and direct the TIE generator to apply vari-
ous optimizations.

7

process, a square millimeter of silicon is enough for 100,000
to 200,000 gates. On-chip memory and peripherals account
for much more silicon in a typical SoC than the micro-
processor core does—even when it’s a configurable proces-
sor with large custom extensions.

To wring the last drop of performance and efficiency
from a design, developers can manually tweak the automat-
ically generated TIE extensions before synthesizing the
processor. There’s nothing hidden or special about the TIE
code that the automatic tool emits. Likewise, there’s nothing
to stop developers from continuing to write their own
extensions in TIE language, either instead of or in addition
to the extensions created by the tool.

In any event, manual labor is still necessary when opti-
mizing very complex tasks. The TIE generator can acceler-
ate code fragments within a complex algorithm, but taking
a holistic approach to large algorithms is as challenging for
an HDL generator as it is for a software compiler. Except for
that understandable limitation, it’s difficult to find fault
with Tensilica’s new tools. Even if they work only half as well
as Tensilica claims, they’re still remarkable.

Rapid Evaluation Saves Time
It’s easy to overlook the most important part of Tensilica’s
achievement. There’s no doubt that custom extensions to a
configurable processor can dramatically boost application
performance; certified EEMBC benchmarks of manually
optimized processors already prove that. And custom exten-
sions will be more popular than ever before with a tool that
can automatically generate them from high-level software
code. What’s more important, however, is the tool’s ability
to speculatively generate thousands of possible extensions,
compare their relative performance, estimate their gate
counts, and present the information to developers in a man-
ner that’s easy to understand.

Table 2 shows the effect of this technology on some
common tasks. The TIE generator found enough ways to opti-
mize a radix-4 fast Fourier transform (FFT) to improve per-
formance by an order of magnitude. It generated more than
175,000 different configurations in only three minutes. Given
half an hour, it discovered 1.8 million ways to accelerate an
MPEG4 encoder. Although many of
those configurations might be too
trivial or inefficient for a skilled engi-
neer to consider, any tool working
that fast can afford to take an almost
random approach. The tool’s ability
to sort the configurations by their
vital parameters allows the best solu-
tions to rise to the top.

In minutes, developers can
now explore many more options
than would be possible with months
of manual design work and simula-
tion. It’s like making the jump from

programming software with toggle switches to using assem-
blers, or from assemblers to high-level languages—except
now it’s the hardware (albeit “soft”) making the leap.

This escalation of design automation will help devel-
opers accelerate their projects, not just their applications. As
time-to-market pressures continue to build steam, the
opportunity to cut a project’s development cycle by weeks
or months could be even more attractive than saving a few
clock cycles in a program loop.

Tensilica’s Strategy: Total Automation
The new TIE generator is another sign that Tensilica is striv-
ing to differentiate itself from other soft-IP providers by
offering superior design automation. Since the very begin-
ning of the company, the TIE language has been central to
this strategy.

Why did Tensilica bother to create TIE from scratch
instead of adopting industry-standard HDLs such as Verilog
and VHDL for custom extensions, as competitors ARC and
MIPS have done? One reason is that TIE is a “correct by
design” language that keeps developers from writing exten-
sions that won’t work with the Xtensa processor core or
might break it. Another reason is that TIE has the explicit
semantics required to support other links in the tool

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

1 8.7x 74KG 8 3 2 Yes
2 8.1x 57KG 8 2 2 Yes
3 7.6x 46KG 4 3 2 Yes
4 7.6x 37KG 8 2 1 Yes
5 6.8x 33KG 4 2 2 Yes
6 6.8x 26KG 8 1 1 Yes
7 6.1x 18KG 4 2 1 Yes
8 5.1x 12KG 4 1 1 Yes
9 4.3x 8KG 2 2 1 Yes
10 3.4x 5KG 2 1 1 Yes
11 1.4x 0.3KG 1 1 1 Yes

FLIX
Slots

Load/Store
Units

FusionConfiguration Speedup Gates
Added

SIMD
Width

Table 1. These 11 variations of an automatically generated custom
extension span a performance range from 1.4× to 8.7× (40% to
770% acceleration over an unmodifed Xtensa processor) and add
300 to 74,000 gates. The Xtensa V base configuration is about
25,000 gates.

Radix-4 FFT 10.6x 175,796 3 minutes 1.5K 3.6K 4.4K
GSM Encoder 3.9x 576,722 15 minutes 17K 20K 38K

111K 136K 356K

Application Speedup Configurations
Evaluated

Time to
Evaluate

Configurations

Original Code
Size Before
Acceleration

Code Size
After

Acceleration

Code Size
MIPS32

MPEG4
Encoder

3.0x 1,830,796 30 minutes

GSM Encoder
(TIE FFT)

1.8x n/a n/a 17K 19K 38K

Table 2. A salmon can lay 25,000 eggs to spawn a few offspring, but that’s nothing compared to
the number of configurations that Tensilica’s TIE generator can create to speed up a program. By
sorting the results with the evaluation tool shown in Figure 2, developers can ensure that only
the fittest configurations survive.

8

chain—not just the original links, such as the Processor
Generator and adaptive software-development tools, but
also new links, such as the automatic TIE generator.

It’s no coincidence that Tensilica is filing most of its
patents for the whole start-to-finish design system, especially
the automated tools, instead of for the Xtensa microprocessor
core. (See MPR 12/9/02-01, “Tensilica Patents Raise Eye-
brows.”) The Xtensa processor itself is competent but not
breathtaking. It’s an unconventional 32-bit architecture with
a 16- and 24-bit instruction set that trades off some per-
formance and programming convenience for code density.
The 24-bit instructions don’t align well on 32-bit memory
boundaries, and they lack the encoding space for the large,
flat register files typical of other RISC processors. Instead,
Xtensa has a smaller set of revolving register windows, remi-
niscent of the SPARC architecture. But it matters little,
because Xtensa is still as fast as the synthesizable competition,
or even faster, and Tensilica’s real product is the impressive
design-automation system wrapped around the processor.

As time goes by, Tensilica begins looking more like an
EDA (electronic design automation) company that also sells
a configurable microprocessor core and less like a soft-IP
company that provides some development tools. Perhaps
we’re not the only observers to notice this evolution. When an
unknown party recently asked the U.S. Patent and Trademark
Office to open one of Tensilica’s patents for reexamination,
the most likely suspects seemed to be direct competitors ARC
and MIPS. However, it’s possible that an EDA company is

growing uncomfortable with Tensilica’s encroachment on its
turf and is seeking to narrow the scope of the patent’s claims.
(See MPR 6/2/03-03, “Tensilica Patent Challenged.”)

Certainly, Tensilica is pushing into territory that has
attracted a great deal of exploration by researchers at com-
panies and universities all over the world. (See the sidebar
with our Tensilica patents article at MPR 12/9/02-01, “Ear-
lier Configurable Processors: Close, But No Cigar.”) For
decades, visionaries have pursued something like a unified
field theory for computer design—a complementary unifi-
cation of the separate design flows for hardware and soft-
ware. Most research concentrates on software-directed
hardware design, in which a program written in a high-level
software language modifies or creates a processing machine
optimized for the software. Of course, that’s exactly what
Tensilica’s new tool does.

Hewlett-Packard is another company working on new
approaches to hardware/software design automation. In
1999, HP Labs and STMicroelectronics announced their Lx
system, which can automatically generate application-specific
VLIW processors with compatible development tools, simu-
lators, and real-time operating-system kernels. (See MPR
1/24/00-03, “HP and ST Collaborate on VLIW.”) Only a
trickle of information about Lx has been released, and the
system isn’t as broadly licensed as Tensilica’s system.

Another HP Labs project in this field is PICO (Program
In, Chip Out). But PICO isn’t shipping, although HP recently
licensed the technology to a new company, Synfora, which
will continue developing PICO and eventually bring it to
market. The PICO project suffered a setback last year when
its primary inventor, HP engineer Bob Rau, passed away. (See
MPR 12/30/02-04, “VLIW Pioneer Bob Rau Dies.”)

Someday, an engineer will write a solution to a com-
puting problem in a high-level language, and automated
design tools will implement the solution with the best com-
bination of hardware and software—“best” as defined by the
engineer for that project. Instead of hardware engineers and
software engineers, there will only be engineers. This may
not happen for a long while, but Tensilica is taking an impor-
tant step toward realizing that vision.

© I N - S T A T / M D R J U N E 2 3 , 2 0 0 3 M I C R O P R O C E S S O R R E P O R T

Tensilica’s Software Makes Hardware

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

P r i c e & Av a i l a b i l i t y

The automatic TIE generator will be available early next
year as an extra-cost plug-in for Tensilica’s Xtensa Xplorer
IDE. Licensing fees for the Xtensa V processor with GNU
software-development tools start at $350,000, plus roy-
alties based on the volume of chips manufactured. The
Xtensa C/C++ compiler, Xtensa instruction-set simulator,
TIE generator, and TIE compiler are priced separately.

