Q\ Reed Electronics Group

M| G 0-P.R 0.6 E3 9.0 F

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE <

A TALE OF TwWO INSTRUCTIONS

Why AMD64 Lost, Then Regained, Two Minor x86 Instructions
By Tom R. Halfhill {7/19/04-01}

Everyone has experienced the woe of cleaning out a closet and discarding something we

needed later. Maybe it was something trivial, like a Pet Rock. Maybe it was something impor-

tant, like a Pete Rose rookie card. Or maybe it was something both trivial and important, like

the SAHF and LAHF instructions in the x86 microprocessor
architecture.

Few closets are as messy as the x86 is. One problem is
that several companies share the same crowded space.
Another problem is that everyone keeps putting things into
the x86 closet, but almost nobody ever takes things out. In
a bold move, AMD recently tried to clean out the closet
while installing a new 64-bit shelf. Unfortunately, AMD dis-
carded two old instructions from the 16-bit days of the x86
that aren’t as obsolete as they seemed. Now AMD is making
additional changes to put everything right again.

The most important changes are that future 64-bit
processors from AMD—and perhaps from other x86 ven-
dors, if everyone gets on the same page—will restore the two
discarded instructions and define a new bit returned by the
CPUID instruction. CPUID is the instruction that an operating
system or user-level program can use to identify the com-
puter’s processor and determine its capabilities. Starting with
new AMD64 processors coming later this year, CPUID will set
a previously undefined bit in a general-purpose register to
indicate whether the processor revives the SAHF and LAHF
instructions that AMD mistakenly purged from 64-bit mode
in AMD64. The strange story of the death and resurrection of
these instructions is a classic example of the reason the x86
architecture has grown so complex over the past 26 years.

SAHF and LAHF: Never Say Die
As we reported last March in our detailed comparison of the
64-bit x86 architectures from AMD and Intel, AMD deleted

several old instructions while defining AMD64. (See MPR
3/29/04-01, “AMD and Intel Harmonize on 64.”) Among the
instructions omitted from 64-bit mode—but preserved in
16- and 32-bit modes for backward compatibility—were
SAHF and LAHF.

Intel introduced both instructions in 1982 with the
16-bit 286 processor. SAHF and LAHF are simple, parameter-
less, complementary instructions with single-byte opcodes
(9E and 9F). SAHF saves five condition flags (sign, zero, par-
ity, carry, and auxiliary carry) into the AH register, also
known as the accumulator. LAHF loads the same five condi-
tion flags from the accumulator. The back-and-forth swap-
ping was useful for context switching, because a single
instruction saves or restores the state of the flags for a par-
ticular process.

When AMD was defining AMD64, it decided to ditch
SAHF and LAHF in 64-bit mode, because today’s operating
systems no longer use them for context switching. Since the
16-bit days of the 286, Intel has added new condition flags
that SAHF and LAHF don’t know about. Modern operating
systems typically use an instruction called PUSHF, to push all
the old and new flags onto the x86 stack, and then an instruc-
tion called POPF, to pop them off the stack and restore the
flag state. SAHF and LAHF seemed to be redundant, obsolete
instructions occupying valuable single-byte-opcode real
estate, so early copies of AMD64 technical manuals warned
that SAHF and LAHF were invalid in 64-bit mode. The Athlon
64 and Opteron chips currently on the market don’t support
the instructions.

© IN-STAT/MDR &

JULY 19, 2004 <

MICROPROCESSOR REPORT




2 A Tale of Two Instructions

For More Information

AMD’s five-volume set of AMD64 programmer’s manu-
als is available in book form or can be freely downloaded
as Adobe PDF files here:

» www.amd.com/us-en/Processors/SellAMD
Products/0,,30_177_4458_3505%5E4699%5E8
75%5E7044,00.html
AMD's “Processor Recognition Application Note"”

for using the CPUID instruction can be freely downloaded
as an Adobe PDF file here:

* www.amd.com/us-en/Processors/Technical
Resources/0,,30_182_739 1102,00.html|
Intel's two-volume set of EM64T programmer’s

manuals is available in book form or can be freely down-
loaded as Adobe PDF files here:

* www.intel.com/technology/64bitextensions/
Intel's “AP-485 Intel Processor Identification Applica-

tion Note" for using the CPUID instruction can be freely
downloaded as an Adobe PDF file here:

* http://developer.intel.com/design/xeon/applnots/
241618.htm

Meanwhile, Intel was defining EM64T, its own 64-bit
extensions for the x86. Striving for software compatibility
with AMD64, Intel studied AMD’s early technical manuals
and AMD64 processors. Everything indicated that SAHF and
LAHF were invalid in AMD’s 64-bit mode; Intel therefore
purged them from 64-bit mode in EM64T, too.

Then came surprising and disturbing news: some mod-
ern programs still use SAHF and LAHF. Without those instruc-
tions, programmers had to port their code to 64-bit mode
using clumsy patches and work-arounds. Mainly, the affected
programs are x86 instruction-set simulators, emulators, and
dynamic binary translators. AMD began hearing from third-
party vendors of these programs, and even from one of its own
internal product groups—because AMD’s SimNow uses SAHF
and LAHF, too. (SimNow is an x86 instruction-set simulator
that independent software developers can use to write code
before actual silicon of a new AMD processor is available.)

Simulators use SAHF and LAHF to avoid some stack
madness. An x86 simulator must maintain at least two stacks:
the monitor stack, for the simulator itself, and the application
stack, for the program running on the simulator. (The appli-
cation stack is the simulated x86 stack.) These two stacks exist
alongside the native stack of the processor on which the sim-
ulator runs. Without SAHF and LAHF—which, as noted above,
save and restore the flags using the accumulator, not the
stack—the simulator would have to do much more work. It
would have to execute the PUSHF instruction to push the flags
onto the application stack; redirect the stack pointer to the
monitor stack for the context switch; redirect the stack
pointer back to the application stack before returning to the

first context; and then execute the POPF instruction to pop
the flags off the application stack and restore the original sim-
ulated processor state.

Redirecting the stack pointer from one stack to another
during this context-switching process could have trouble-
some side effects. For instance, another context switch could
change the state of the stacks, requiring additional control
code so they could remember their original states and the
original locations of their stack pointers. Of course, any new
control code in the context-switching path would reduce per-
formance, already a concern with simulators. To keep its cus-
tomers happy, AMD soon realized it would have to restore
SAHF and LAHF in 64-bit mode on AMD64 processors. Unfor-
tunately, the first AMD64 processors were already shipping—
without the instructions.

Can't We All Just Get Along?

Revising manuals is a lot easier than revising processors, so
AMD’s first step was to issue new AMD64 technical manuals
listing SAHF and LAHF as valid in 64-bit mode. However,
AMD didn’t call special attention to the revision, so only the
most eagle-eyed readers, familiar with both versions of the
books, would have divined that a change was coming in
future AMD64 processors. Among those who didn’t notice
were the Intel engineers working on EM64T. It wasn’t their
fault. AMD didn’t communicate the information directly to
Intel, because the two companies have approximately the
same relationship as Itchy and Scratchy on The Simpsons.

Microprocessor Report missed the revision, too. The over-
sight surfaced when MPR sent a draft of our AMD64/EM64T
comparison (cited above) to Intel for technical review. After
reading that AMD had restored LAHF and SAHF, Intel objected
that the information was inaccurate—with good reason:
Intel’s tests of the latest AMD64 processors showed that invok-
ing either instruction in 64-bit mode caused an illegal opcode
exception. MPR double-checked with AMD, which acknowl-
edged that current Athlon 64 and Opteron processors
(AMD64 revision C) don’t support the instructions. AMD
said future processors would restore them, but the company
didn’t say when.

Recently, AMD informed MPR that new AMDG64
processors, scheduled to ship later this year, will include SAHF
and LAHF. To give programmers a familiar way of checking
whether a particular processor supports the instructions,
AMD has also defined a new bit returned by a CPUID
extended function call. The function—identified by the
32-bit hexadecimal number 8000_0001h—returns values in
the x86 general-purpose registers. For example, when a pro-
gram executes CPUID and passes 8000_0001h as a parameter
in the EAX register, the function returns the “processor sig-
nature” (the processor model, instruction family, stepping
number, and so forth) in the same register. In new AMD64
processors, function 8000_0001h will also set bit 0 in the ECX
register if the processor supports SAHF and LAHF. If the
processor doesn’t support the instructions, the function will

© IN-STAT/MDR <

JULY 19, 2004 <

MICROPROCESSOR REPORT




clear ECX bit 0. Previously, all bits in ECX were undefined
after calling extended function 8000_0001h.

Intel is still deciding whether future EM64T proces-
sors will restore SAHF and LAHF in 64-bit mode. The first
EM64T processors certainly won’t support them, because
Intel—like AMD—was too far along toward final silicon
when AMD reversed its hasty decision to drop the instruc-
tions. We think there’s a fair chance the instructions will re-
appear in EM64T at some point, because Intel says it wants
to preserve as much compatibility as possible between the
64-bit architectures.

A Tale of Two Instructions 3

Whether or not Intel restores SAHF and LAHF, it would
be useful for the company to modify extended-function
8000_0001h, as AMD is doing, so programmers can readily
identify whether a processor supports the instructions in
64-bit mode. It would also be useful for AMD and Intel to
strengthen the diplomatic backchannels between their com-
panies to discuss these kinds of compatibility issues. AMD’s
first fling in the driver’s seat of the x86 resulted in a wrong
turn, but it caused no serious harm—this time. Software
developers and users have too much at stake for x86 vendors
to leave compatibility up to chance. <~

To subscribe to Microprocessor Report, phone 480.609.4551 or visit www.MDRonline.com

© IN-STAT/MDR &

JULY 19, 2004 < MICROPROCESSOR REPORT




