Q\ Reed Electronics Group

M| G 0-P.R 0.6 E3 9.0 F

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE <

ARM STRENGTHENS JAVA COMPILERS

New 16-Bit Thumb-2EE Instructions Conserve System Memory

By Tom R. Halfhill {7/11/05-01}

In the 10 years since Sun Microsystems introduced Java, the dragon of slow run-time performance

has pretty much been slain by better virtual machines, faster microprocessors, and extensions like

ARM’s Jazelle. Today, Java is successfully running on cellphones and other embedded systems.

Now, ARM is taking up another challenge: reducing
code bloat when compiling Java bytecode with just-in-time
(JIT) compilers or static native compilers. Either type of com-
pilation can dramatically improve on the performance of a
Java run-time interpreter, but it usually exacts a high price in
memory, as the code expands to several times its original size.

ARM’s solution is a new variation of Jazelle that en-
hances the 16/32-bit Thumb-2 instruction set t o assist com-
pilers. Java isn’t the only beneficiary. The extensions are also
useful for other cross-platform programming languages that
rely on run-time interpreters or virtual machines, such as
Perl, Python, and Microsoft’s .NET languages.

The new Jazelle extensions will appear in all of ARM’s
future Cortex-A embedded-processor cores and will be
optional in Cortex-R processors, but they will be absent from
the Cortex-M family. Cortex-A is intended for applications
processors, and Cortex-R is for real-time embedded systems;
both families are likely to run Java software. The smaller
Cortex-M cores are for microcontrollers constrained by strin-
gent cost and power requirements. (See MPR 11/29/04-01,
“ARM Debuts Logical V7”) ARM plans to deliver the first
Cortex-A and Cortex-R processor cores with the new exten-
sions this fall, and the first chips should appear in 1HO06.

ARM’s marketing department has been busy, too, con-
cocting a host of new brand names for the technology. The
new extension package is called Jazelle RCT (Run-time Com-
pilation Target) because it’s aimed primarily at compilers.
The original Jazelle extensions that ARM introduced in 2000

will henceforth be known as Jazelle DBX (Direct Bytecode
eXecution) because they are designed for accelerating Java
bytecode interpreters. (See MPR 2/12/01-01, “Java to Go:
Part 1” through MPR 6/4/01-01, “Java to Go: Part 4.”) The
subset of 16-bit instructions in Jazelle RCT will be called
Thumb-2EE (Execution Environment). And when an ARM
processor enters the state enabling Thumb-2EE instructions,
the new execution environment will be called ThumbEE.

It sounds more complicated than it really is. To put it
more simply, Jazelle RCT adds 12 new 16-bit instructions to
the ARMv7 architecture, and it modifies the operation of a
few existing Thumb-2 instructions while the processor runs
in ThumbEE state. The new Thumb-2EE instructions
address some idiosyncrasies of virtual-machine languages
and compilers. Although the instructions appear arcane, they
can significantly reduce the size of compiled executables to
conserve memory and improve overall performance.

Compilers Aren't Just Compilers Anymore

In ancient times—say, the 1960s—all compilers were static
native compilers. They were design-time tools used by pro-
grammers to convert source code into native executable
code that ran on only one processing architecture. To target
a different architecture, programmers had to recompile the
source code, creating a new executable program. Most
modern compilers still work that way, but Java has popular-
ized the concept of a run-time compiler. Although Sun didn’t
invent cross-platform interpreted languages or run-time

© IN-STAT <7

JULY 11, 2005 < MICROPROCESSOR REPORT

2 ARM Strengthens Java Compilers

compilation, Java made those technologies popular in the
mass market.

Run-time or JIT compilers generate the executable pro-
gram from an intermediate language when the program
launches, just in time for execution. They aren’t quite the
same as run-time interpreters, which typically translate the
source code or an intermediate language into executable code
line by line as the program runs. A run-time compiler con-
verts all or some of the code at once and caches it in system
memory for fast execution. Run-time compilers almost
always work alongside a traditional interpreter, because some
parts of the program aren’t worth compiling. For example,
Java applets contain initialization code that executes only
once, when the applet launches, so there’s no advantage in
compiling and caching that code.

Some run-time compilers—often called dynamic adap-
tive compilers (DAC)—continue compiling parts of a pro-
gram during execution, using information gathered at run
time to focus on the most frequently used or time-consuming

parts of the program. As run-time compilation technology
keeps evolving, there is less and less distinction between JIT
compilers and DACs, because a DAC is really just a smart JIT.
All run-time compilers should be smart enough not to spend
more time compiling than they save by avoiding line-by-line
interpretation, so they all perform some run-time analysis. To
prevent hiccups during execution, they must also be quick and
dirty compilers. In contrast, a static native compiler—also
known as an ahead-of-time (AOT) compiler—can spend
much more time analyzing the source code and building an
optimized executable file.

Most CPU architectures were created with design-time,
not run-time, compilers in mind. Consequently, their
instruction sets aren’t optimized for JITs. In addition, the
software targeted by JITs is usually written in a programming
language that produces an intermediate format halfway
between source code and native code. Java bytecode is one
example of an intermediate executable format; another is the
Microsoft Intermediate Language (MSIL), the foundation of

NET languages such as Visual

Instruction

ENTERX
LEAVEX
CHKA Rn, Rm

HB{L} #handler

HB{L}P #handler, #parameter

LDR Rd, [R9, #offset]
STR Rd, [R9, #offset]

LDR Rd, [R10, #offset]

LDR{S}H Rd, [Rn, Rm, LSL#1]

STR{S}H Rd, [Rn, Rm, LSL#1]

LDR Rd, [Rn, Rm, LSL#2]

STR Rd, [Rn, Rm, LSL#2]

Thumb-2 Instructions Disabled or

LDMIA

STMIA

LDR Rd, [Rn, Rm]
STR Rd, [Rn, Rm]
LDR{S}H Rd, [Rn, Rm]
STR{S}H Rd, [Rn, Rm]

Description

Notes

New Thumb-2EE Instructions

Enter ThumbEE state
Leave ThumbEE state
Array bounds check

Branch to handler

Branch to handler,
pass parameter

Load register
from address
Store register
at address
Load register
from address
Load register
from 16-bit array
Store register
from 16-bit array
Load register
from 32-bit array
Store register
from 32-bit arra:

Load multiple
(16-bit instruction)
Store multiple
(16-bit instruction)
Load register
Store register
Load register
Store register

Enables new Thumb-2EE instructions
and disables some Thumb-2 instructions
Disables Thumb-2EE instructions
and returns to Thumb-2 mode
Throws an exception if array index
is below or above the array length
Branches to a specified handler routine
(up to 256); option {L} saves return address
HBP branches to specified handler routine
(up to 8) while passing a 3-bit integer;
HBLP branches to specified handler routine
(up to 32) while passing a 5-bit integer
Load a low register (RO-R7) from
specified register address with offset
Store a low register (RO-R7) to
specified register address with offset
Load a low register (RO-R7) from
specified register address with offset
Load register from a 16-bit array without
using 32-bit instr or additional shift instr
Store register into a 16-bit array without
using 32-bit instr or additional shift instr
Load register from a 32-bit array without
using 32-bit instr or additional shift instr
Store register into a 32-bit array without
using 32-bit instr or additional shift instr
Modified in ThumbEE state
Disabled in ThumbEE state to free opcode
space for Thumb-2EE instructions
Disabled in ThumbEE state to free opcode
space for Thumb-2EE instructions
Replaced by LDR with left-shift of Rm
Replaced by SDR with left-shift of Rm
Replaced by LDR{S}H with left-shift of Rm

Replaced by SDR{S}H with left-shift of Rm

Basic and C#. Few CPU architec-
tures were created with those inter-
mediate languages in mind, either.

ARM’s original Jazelle ex-
tensions, now called Jazelle DBX,
were ARMs first step toward opti-
mizing the ARM architecture for
Java interpreters and JITs. Jazelle
DBX consists of native ARM
instructions that map more
directly to Java bytecode instruc-
tions. The latest Jazelle RCT exten-
sions add more new instructions
catering to design-time and run-
time compilers for Java and other
high-abstraction programming
languages.

Jazelle RCT addresses some
other features of these program-
ming languages as well. Languages
such as Java and C# are object ori-
ented from the ground up (unlike
C++) and have many built-in safe-
guards against common program-
ming errors and hacker exploits
(unlike C and C++). For instance,
Java blocks a program’s attempt to
reference memory beyond the
bounds of an array, and it enforces
more-rigorous type checking and
type casting for variables. These

Table 1. Jazelle RCT extends Thumb-2 with these new Thumb-2EE instructions in the ARMv7 architecture.
All Thumb-2EE instructions are 16 bits long. Thumb-2EE instructions can execute only when a program
enters the new ThumbEE state with the ENTERX instruction. LEAVEX exits ThumbEE. Note that a few exist-

safeguards require more bounds
checking and exception handling,
both at compile time and at run

ing Thumb-2 instructions shown in this table are not available or will behave differently in ThumbEE state. time.

© IN-STAT <

JULY 11, 2005 <

MICROPROCESSOR REPORT

Java will always be an odd fit for traditional CPU archi-
tectures, because the bytecode is actually native code for a vir-
tual CPU architecture not intended for inscription in silicon.
Nevertheless, tweaking existing CPU architectures to make
them more Java friendly has proved more successful than the
numerous and mostly sorry attempts to sell Java processors
that natively execute bytecode. (See MPR 3/17/03-02, “Octera
Throws a Javalon”; MPR 8/14/00-04, “Imsys Hedges Bets on
Java”; MPR 8/7/00-02, “Embedded Java Chips Get Real”; MPR
3/27/00-04, “JSTAR Coprocessor Accelerates Java’; MPR
11/17/97-02, “MicroJava Pushes Bytecode Performance”; and
MPR 4/15/96-01, “New Embedded CPU Goes ShBoom.”)

Jazelle RCT: Only a Dozen Instructions

Table 1 lists all the new Thumb-2EE instructions that Jazelle
RCT adds to the ARMv7 architecture. There are only a dozen,
because Jazelle RCT is a tightly focused extension package
requiring only about 8,000 gates in the processor core. The
table also lists some existing Thumb-2 instructions disabled
or modified while the processor runs in the ThumbEE execu-
tion environment.

Because ThumbEE is a different execution environment
(processor state) than Thumb, existing Thumb-2 code
remains compatible and can continue using the instructions
disabled or modified in ThumbEE. A program must explicitly
enter and leave ThumbEE using the new ENTERX and LEAVEX
instructions shown in the table. The processor distinguishes
among different execution environments by reading the T and
J bits in the current program status register (CPSR), as follows:
setting the T-bit indicates Thumb state; setting the J-bit indi-
cates Jazelle DBX state; setting both the T-bit and J-bit indi-
cates ThumbEE state; and clearing both the T-bit and J-bit
indicates normal 32-bit ARM state.

Jazelle RCT is subtle and highlights the idiosyncrasies of
Java and similar virtual-machine platforms. Consider the
new CHKA instruction, which checks whether an array index
is above or below the size of the array. CHKA throws an excep-
tion if an index is out of bounds. It’s a simple instruction that
at first glance seems hardly worth the trouble of adding to a
well-established CPU architecture like ARMv7. However,
CHKA is valuable for languages like Java, which frequently
uses bounds checking to trap null-pointer bugs and to pre-
vent the buffer-overflow exploits that haunt other platforms.
CHKA can replace the two or three compare and branch
instructions required to check the array bounds and call the
appropriate exception handler.

ARM’s CHKA instruction is reminiscent of a feature in
Digital Communication Technologies’ (DCT) Lightfoot
processor core, which is also optimized for Java. Lightfoot has
an array-bounds cache that stores the base address and length
of each array. If an array reference exceeds the array bounds,
Lightfoot throws an exception and calls a Java security han-
dler. Although the CHKA instruction is a different implemen-
tation of the same concept, both ARM and DCT have found
ways to optimize their processors for an extremely common

ARM Strengthens Java Compilers 3

operation in Java and other modern programming languages.
(See MPR 1/28/02-04, “DCT Marches Into Java Processors.”)

A Utility Infielder for Catching Exceptions
Similarly, ARM’s new HB{L} and HB{L}P instructions can jump
to an exception handler while optionally passing a parameter.
HB{L} can jump to any of 256 predefined handlers. That may
seem like an excessive number of handlers, but it allows a Java
program compiled with this instruction to quickly call fre-
quently executed pieces of code, such as the routine that allo-
cates memory for a new object. In addition, one of Java’s
safety features is that any method capable of throwing an
exception requires an exception handler, or else the source
code won’t even compile. As a result, Java programs often
have numerous TRY-CATCH statements that try to perform a
task and catch any exceptions thrown if the attempt fails.
The remaining extensions in Jazelle RCT optimize
load/store operations. These new instructions focus on Java-
centric features, too. For instance, the LDR and STR instruc-
tions that access a memory address calculated from an offset
to register R9 are intended primarily for manipulating the
Java stack—particularly the local variables of methods. Like-
wise, the LDR instruction that loads from an address offset of
register R10 is intended for loading method constants.
Other LDR and STR instructions allow access to elements
of 16- or 32-bit arrays without using a 32-bit-long instruction
or multiplying the index to reach deeply into such large arrays.
All loads and stores check the base register for a null pointer
and call an exception handler if that is the case. These instruc-
tions modify the behavior of some LDR and STR instructions
normally available in Thumb state, as indicated in the table.

300%
250%

200%
150%

100% -
50%
0% | |

Micro Larger
Benchmarks Benchmarks

Class
Libraries

[] Java Bytecode |] Thumb-2EE [Jl] Thumb-2 | 32-bit ARM

Figure 1. At best, a static native compiler enhanced with Jazelle RCT
generated executable code only 7% larger than the original Java byte-
code, according to these ARM internal benchmark tests. At worst, the
same compiler generated code 44 % larger—still impressive, consider-
ing that most static compilers inflate Java bytecode to several times its
original size. Micro benchmarks: short sequences of typical Java code
used by ARM's engineers to test the first implemention of a processor
with Jazelle RCT. Larger benchmarks: proprietary Java benchmarks
from third parties. Class libraries: Connected Limited Device Configu-
ration (CLDC) 1.0.4 class libraries and the Mobile Information Device
Profile (MIDP) 2.0 reference implementation libraries from Sun.

© IN-STAT <7

JULY 11, 2005 < MICROPROCESSOR REPORT

4 ARM Strengthens Java Compilers

Price & Availability

Jazelle RCT is a new subset of the ARMv7 architecture that
will be included with all ARM Cortex-A processor cores
and will be optional in Cortex-R processor cores. ARM
plans to release the first of those cores this fall. ARM
doesn't publicly disclose licensing fees for its processors.
For more information, visit this (case-sensitive) URL:
www.arm.com/products/solutions/Jazelle.html.

When an ARM processor with Jazelle RCT enters
ThumbEE state, it disables two existing Thumb-2 instruc-
tions altogether: LDMIA (load multiple) and STMIA (store
multiple). These instructions load or store any subset of
general-purpose registers in a single operation; the substitute

Java Source Java Bytecode Compiled With Thumb-2

BHS.W ArrayIndexHandler
STR.W R2,[RO,R1,LSL#2]
TOTAL BYTES| 13

Java Source Java Bytecode | Compiled With Thumb-2EE

X = new int[50]; [bipush 50
newarray int

MOV RO, #50 2
HBLP.X #T_INT, #NewArray 2

astore 5 STR.X RO,[R9,#20] 2
X[index] = data |aload 5 2
iload 4 LDR.X R1,[R9,#16] 2
iload 6 LDR.X R2,[R9,#24] 2
iastore 1
MOV R7 #50
CHKA.X R7,R1

STR.X R2,[RO,R1,LSL#2]
TOTAL BYTES| 13

Code Size (Bytes)

Java
X = new int[50]; | bipush 50 MOV RO, #50 2
newarray int MOV.W R8 #T_INT 2
BL.W DoNewArray
astore 5 STR.W RO,[R9,#20] 2
X[index] = data |aload 5 2
iload 4 LDR.W R1,[R9,#16] 2
iload 6 LDR.W R2,[R9,#24] 2
lastore CMP RO,#0 1
BEQ.W NullPtrHandler
CMP R1,#50

Code Size (Bytes)

Native

is to use individual load or store instructions. ARM sacrificed
LDMIA and STMIA in ThumbEE to make room in the ARMv7
opcode map for the new Jazelle RCT instructions, but they
remain available in Thumb state.

Evaluating the Efficiency of Jazelle RCT

ARM says a Java compiler enhanced with Jazelle RCT can
produce ARMv7 executable code that’s within 10% of the size
of the original Java bytecode. If true, that’s a remarkable
achievement. Compilation often bloats a Java program to
several times its original size. Sun offers a dynamic adaptive
compiler as part of its Connected Limited Device Configura-
tion (CLDC) HotSpot Implementation, and code expansion
with this compiler is typically about 6x.

One reason for this expansion is that Java wasn’t designed
for static compilation. Sun designed Java for native translation
at run time and optimized the bytecode for compactness so Java
applets could travel rapidly over large networks. The
ARM architecture lends itself to generating compact
code, too, especially when using Thumb, so Jazelle

Na've RCT makes for a happy marriage.
4 To back up its claims of minimal code expan-
4 sion, ARM used its own Java compiler (not a com-
4 mercially available product) to compile some inter-
4 nal benchmark code. ARM notes that this static
4 native compiler is a research tool optimized for high
2 code density, not high throughput. Figure 1 com-
4 pares the code size of the original Java bytecode with
i the compiler’s output when using standard ARM
4 instructions, Thumb-2 instructions, and Thumb-

38 2EE instructions (Jazelle RCT).
Of course, the results produced by different

2 compilers will vary widely. One important factor is

5 how aggressively the compiler optimizes the Java
bytecode for performance, because speed optimiza-
2 tions often require a trade-off in code density. For
instance, a common performance optimization is
; method inlining, which replicates the code of entire
methods to eliminate branches to distant memory
2 addresses. Extensive inlining quickly inflates a pro-
; gram to several times its original size. By using

Jazelle RCT, a compiler could offer a better com-

Figure 2. These code snippets from a Java program demonstrate how Jazelle RCT con-
serves memory. The first example shows two lines of Java source code, the corresponding
intermediate bytecode generated by a Java source compiler, the assembly-language code
generated by an ARM bytecode-to-native compiler using Thumb-2 instructions, and the
code size in bytes for the Java bytecode and compiled native code. (Mnemonics with a
W suffix are 32-bit Thumb-2 instructions.) The second example shows the same two

promise. It could keep the program relatively small
while still allowing some inlining, or it could apply
aggressive inlining without bloating the program
beyond the size that an unenhanced compiler
would generate. To illustrate how Thumb-2EE
instructions reduce code bloat, ARM provided the
before-and-after code examples in Figure 2.

lines of Java source code and bytecode, the assembly code generated by an ARM byte-

code-to-native compiler using Thumb-2EE instructions, and the code size in bytes for the
Java bytecode and compiled native code. (Mnemonics with a .X suffix are Thumb-2EE
instructions.) In the first example, the native code is nearly three times the size of the
bytecode. In the second example, the native code is only three bytes larger. However,
note that ARM simplified this example for clarity, so it may not be typical of real compiler
output. In particular, register usage is the same in both code snippets, whereas a real com-

piler might use the registers more efficiently with Thumb-2.

Effect on Throughput Is Uncertain

ARM also benchmarked Jazelle RCT to measure the
effect on throughput. As Figure 3 shows, one inter-
nal benchmark test found that Java bytecode com-
piled with Thumb-2EE instructions ran slightly

© IN-STAT &

JULY 11, 2005 <

=

MICROPROCESSOR REPORT

faster than the same bytecode compiled with Thumb-2
instructions and only slightly slower than regular 32-bit ARM
code. However, this test didn’t include all the benchmark tests
shown in Figure 1—it omits the proprietary third-party
benchmarks and Java class libraries. ARM says its early
pipeline simulator for a Cortex processor with Jazelle RCT
isn’t fast enough to boot up the operating system and Java
platform required to run those system-level tests.

When Cortex processors with Jazelle RCT become
available, we hope ARM runs more tests with an independ-
ent benchmark suite and a commercial Java compiler.
Although ARM is a member of EEMBC, which has a Java
benchmark suite, and even chairs the Java subcommittee,
ARM has never published certified EEMBC benchmark
scores for Java performance.

One reason for ARM’s reluctance may be that almost no
one has published scores for EEMBC'’s Java suite, so there’s no
meaningful context for comparison. In March 2004, EEMBC
published the first benchmark results for the suite, which uses
Java 2 Micro Edition (J2ME) and produces a composite score
known as the GrinderMark. Sun Microsystems used the
GrinderMark tests to measure the performance of two Java
virtual machines on a Sharp Zaurus SL-5500 PDA, which has
an Intel StrongARM processor. More than a year later, no
other vendor has published GrinderMark scores. (See MPR
8/30/04-01, “Benchmarking the Benchmarks.”)

To remedy the situation, EEMBC wants to essentially
give away the GrinderMark suite for free. Currently, only pay-
ing EEMBC members enjoy access to it. EEMBC is planning
to post the executable files of the GrinderMark suite (but not
the Java source code) on a new website from which anyone
can freely download and run the tests on a Java cellphone.
Furthermore, EEMBC may relax its restrictions preventing
members from publishing benchmark results for other mem-
bers’ products. If all those plans come to pass, it will soon be
possible to benchmark Java performance on cellphones built
with ARM and other processors and then publicize the scores.

Java Is Vital for ARM
Despite the lack of independent benchmark tests with a Java
compiler that real-world software developers can use, MPR
doesn’t doubt that Jazelle RCT is a good addition to the ARMv7
architecture. Only the degree of improvement is in question,
and even the best available benchmarks wouldn’t provide a
blanket answer—compilation varies too widely. We trust that
ARM wouldn’t have troubled to modify its architecture and
processors if Jazelle RCT were valueless. Java performance is
simply too important for ARM’s business, which is powerfully
driven by cellphones and other embedded-Java systems.

Opver the past 10 years, numerous companies have tried
to accelerate Java in numerous ways, but Jazelle RCT is the

ARM Strengthens Java Compilers 5

100%

98%

96%

94%

92%

90%

Micro Benchmarks

[] Thumb-2EE []Thumb-2 [l 32-bit ARM

Figure 3. ARM's internal benchmarking indicates that an ahead-of-time
(AOT) Java compiler can limit code bloat without significantly hamper-
ing performance. This test indicates that bytecode compiled with
Thumb-2EE instructions can outperform the same code compiled with
Thumb-2 instructions.

first attempt we’ve seen to limit the code bloat of compilation
by modifying an existing microprocessor architecture. It’s
logical that ARM would lead the charge. ARM processors rule
the worldwide cellphone market and are extremely popular
in all kinds of low-power embedded systems. Having already
introduced Jazelle DBX to conserve clock cycles, ARM is now
introducing Jazelle RCT to conserve memory.

Not everyone is convinced that saving memory is worth
adding gates to the processor. MIPS Technologies says mem-
ory is a “nonissue” now that Java cellphones typically have at
least 2MB or 3MB. The preferred MIPS solution for boosting
Java performance is Esmertec’s JBed dynamic adaptive com-
piler, which needs only 235KB. MIPS argues that graphics
performance on cellphones with color screens is becoming a
larger issue than Java performance or system memory. There
is some truth in what MIPS says, but MPR believes that con-
serving memory is still important, especially given the trends
in cellphone design and other consumer electronics.

We note that ARM endorses Esmertec’s JBed platforms
and dynamic compiler, too. In fact, ARM and Esmertec last
year announced a collaborative relationship in which Esmertec
will use Jazelle DBX extensions to accelerate JBed. Although
ARM and Esmertec haven’t announced a similar deal for
Jazelle RCT vyet, it’s almost a sure bet that Esmertec will adopt
the new extensions in a future version of JBed for ARM.

Memory will be an issue in cellphones and other small
embedded-Java systems as long as designers keep cramming
more and more functions into the devices. The consumer
appetite for extra features seems insatiable, and users are
eagerly downloading games, applications, utilities, and
other software written in Java. Conserving memory with
Jazelle RCT is worth the trifle of 8,000 additional gates,
which require a mere speck of silicon in a deep-submicron
fabrication process. <

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MDRonline.com

© IN-STAT <7

JULY 11, 2005 < MICROPROCESSOR REPORT

