
© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

a microprocessor architecture capable of efficiently exe-
cuting it.

Ambric, an Oregon-based fabless semiconductor com-
pany founded in 2003, favors the latter approach. Starting
with a new microprocessor architecture and building the
development tools as an afterthought is tolerable if the archi-
tecture is conventional. But if the new architecture is an
exotic one intended for massive parallelism, the tools require
more forethought. As overwhelmed programmers are dis-
covering, it’s easier to slap down multiple processor cores on
a chip than it is to write efficient parallel-processing code for
the damn things.

At this week’s Fall Microprocessor Forum in San Jose,
California, Ambric Fellow and senior hardware architect Mike
Butts introduced his company’s Am2045 massively parallel
processor and architecture. This 117-million-transistor chip,
fabricated in a modest 0.13-micron CMOS process, crams 360
proprietary 32-bit RISC processors and 585KB of SRAM onto
a single compact die. Maximum theoretical performance ex-
ceeds one trillion operations per second (TOPS) at 333MHz.
The Am2045 is designed to replace high-end embedded
processors, DSPs, and FPGAs in applications that require fast
general-purpose integer and digital-signal processing. Exam-
ples include H.264 digital-video compression/decompression
and data processing for communication infrastructures.

More important than the chip is the programming
model. Application programmers will write most of their
code in Java, but the Am2045 isn’t a Java chip. There’s no Java

virtual machine, bytecode interpreter, or just-in-time (JIT)
compiler. There isn’t even any bytecode. Instead, Ambric has
adopted Java solely for its familiarity and object orientation.
Ambric’s special software-development tools convert Java
source code into proprietary machine language, then auto-
matically map the compiled objects onto the massively paral-
lel array of RISC processors.

Ambric organizes the RISC processors into independent
clusters, each cluster having its own ALUs, registers, and local
memories. The processors and clusters communicate with
each other by passing messages through special channels and
registers. By duplicating the clusters in a cookie-cutter fash-
ion, Ambric can design a chip with virtually any number of
processors, within the limits of the fabrication technology. In
addition, each processor cluster runs at its own variable clock
speed, matching performance to the workload.

Ambric claims it has achieved its goal of making a mas-
sively parallel processor that’s relatively easy to program. Of
course, the truth will be evident when the Am2045 gets into
the hands of more developers. In any case, Ambric has
designed a fascinating architecture that rides three waves:
multicore microprocessor design, intense interest in parallel
processing, and object-oriented programming.

Cache Is Good, Logic Is Better
A fundamental philosophy behind Ambric’s design is to
take advantage of Moore’s law in ways other than dumping
more cache on the chip. It’s not that Ambric doesn’t like

AMBRIC’S NEW PARALLEL PROCESSOR
Globally Asynchronous Architecture Eases Parallel Programming

By Tom R. Halfhi l l {10/10/06-01}

There are two general approaches to conceiving a new microprocessor architecture. One

is to start by designing an elegant architecture, then finish by building the software-

development tools. The other is to start with an elegant programming model, then create

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

2

cache—it’s just that logic is the real workhorse of a micro-
processor. Cache is the fallback position if the designers can’t
find anything more useful on which to spend their transistor
budget. It’s no longer unusual for processors to devote more
die area to memory than to logic. Although cache is a valid
way to improve performance and overcome the widening gap
between processor performance and memory latency, some
architects view it as a detour from the divine path of Moore’s
law. (See MPR 12/13/04-02, “Viewpoint: The Mythology of
Moore’s Law.”)

CPU architects recently hit the walls of clock frequency
and heat dissipation, but the march of fabrication technology
continues to expand transistor budgets, often beyond the
ability of architects and design tools to effectively apply the
transistors to logic. Multicore design is the industry’s reaction
to that dilemma. By replicating processor cores, architects can
design larger chips with relatively little additional effort.
However, writing multithreaded code that efficiently utilizes
a multicore processor is another matter. Recently, there has
been an explosion of new interest in parallel processing and
multithreaded programming. Small companies and univer-
sity projects that once labored in obscurity are now compet-
ing for their 15 minutes of fame.

Over the years, most programmers have grown com-
fortable with the relatively extravagant expenditure of two
critical computing resources: main memory and mass stor-
age. In all but the smallest embedded systems, both
resources are available in relative abundance today. In con-
trast, the most critical computing resource—processor
clock cycles—is more scarce. Most systems have only one
main processor. Now, multicore processors are making
clock cycles as abundant as RAM and storage capacity have
become. But programmers are still conservation minded,
struggling to write multithreaded code that distributes
complex workloads across multiple processor cores while
wasting as few clock cycles as possible. What if processors
were a plentiful and fungible resource, like RAM and disk
space? That day is nigh, but programming models and tools
haven’t kept up.

Ambric’s programming model assumes that a modern
chip can integrate so many processor cores that a simple
software object (a subroutine, more or less) can run exclu-
sively on its very own processor. No other objects in the pro-
gram need to contend for the same resources. More-complex
objects may run on multiple processor cores. Although this
programming model may waste some processing resources,
it allows logically divided chunks of code to run with a high
degree of autonomy and independence.

Locally, each small cluster of processors in Ambric’s
massively parallel array runs at its own clock speed, as dic-
tated by its software workload. Globally, however, the proces-
sors don’t march in time to a single clock signal. This organ-
ization of independent clock-frequency domains is called
GALS (globally asynchronous, locally synchronous), and it’s
the key to understanding Ambric’s architecture. Note, how-
ever, that each small cluster of processors in Ambric’s chip is
built in conventional synchronous logic, not in clockless
asynchronous logic. That characteristic sets it apart from the
SEAforth parallel-processing architecture that IntellaSys
introduced at Spring Processor Forum. SEAforth is locally
and globally asynchronous and has an equally innovative
programming model based on the Forth language. (See MPR
8/21/06-03, “Embedded Arrays Venture Forth.”)

On-Chip Interconnects Regulate Processing
Figure 1 is a high-level conceptual diagram showing how
Ambric maps its programming model onto multiple proces-
sor cores. For this simple example, we’re showing only seven
cores. Two of them (numbers 1 and 7) are running relatively
simple software objects requiring only a single core. A more
complex object, which Ambric calls a composite object, is
running on two cores (numbers 3 and 5). An even more
complex composite object is running on cores 2, 4, and 6. An
on-chip network of channels connects the cores together.

One problem with a multicore architecture that allows
individual cores to run at their own clock speed is synchro-
nizing their processing. Obviously, one core can’t begin work-
ing on data that depends on another core’s results until those

results are ready. This is the classic data-dependency
problem that requires conventional out-of-order proces-
sors to devote so much logic overhead to pipeline control.
But out-of-order processors exploit instruction paral-
lelism discovered at run time, for the most part. Ambric’s
parallel processor exploits data parallelism discovered and
mapped to the processor array at development time.

In Ambric’s architecture, special data channels are
wholly responsible for synchronizing the processor cores.
There’s no global flow control or explicit pipeline sched-
uling. Instead, the channels regulate the processors
locally. A processor located downstream must wait until
it receives results from a processor located upstream. The
point-to-point channels are a word wide (32 bits, in this
implementation) and are very short wires. At each end is
a special register that’s distinct from the general-purpose

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 1. This conceptual diagram shows how software objects (essentially,
subroutines or groups of related subroutines) run on multiple processor cores in
Ambric’s massively parallel array. Simple or “primitive” objects may require only
a single processor core. Complex or “composite” objects may run on multiple
cores. Processor cores may run asynchronously in relation to other cores.
Ambric’s message-passing mechanism brings order to this organization.

Asynchronous
Ambric channel

Primitive object
running on

Ambric processor
Application

Composite
object

421 6 7

53

3

registers in the processor cores.
To the processors, however, the
channel registers look like normal
registers—read/write operations
require only one clock cycle. This
arrangement allows very fast
message passing between neigh-
boring processors. Figure 2 illus-
trates the flow-control protocol
of these channels.

From a global view, the
parallel-processor array runs
asynchronously. This allows the
array to automatically vary the
speeds of its processor clusters
according to the tasks they exe-
cute. Individual processor clusters can run at widely differ-
ent clock frequencies—from less than 1.0MHz to 333MHz,
in Ambric’s initial implementation. Locally, each processor
cluster runs synchronously, coordinating with neighboring
clusters through the chained-register channels. This GALS
design avoids some potential pitfalls of clockless asynchro-
nous architectures, such as race conditions and the diffi-
culty of maintaining stability throughout the device.

Ambric says the architecture is an “asynchronous
machine, but really it’s clocked”—thus revealing that the
company’s name can be interpreted as a subtle acronym.
Ambric also uses the “bric” portion of the acronym to
describe the replicated clusters of processor cores and mem-
ory. (More on this later.)

A Different Application of Java
First, let’s delve a little deeper into the object-oriented
programming model. Ambric bases its software-
development tools on the open-source Eclipse frame-
work, which is proving to be a godsend for startups
that need to bring up a tool suite quickly. For con-
venience, Ambric’s tools use a strict subset of Java as
the source language for objects, but without a Java
bytecode compiler. Instead, Ambric’s tools statically
compile the Java source code into the native machine
language of the proprietary 32-bit RISC processors.

For maximum performance in critical loops and
subroutines, programmers can write machine-language
objects using Ambric’s assembler. Whether program-
mers use Java or assembly language, they write the
objects in conventional sequential code. The paral-
lelism lies in multiple objects running simultaneously
on the parallel-processor array using the on-chip net-
work of channels.

To link the objects together in parallel structures
for the channels, programmers can use a graphical
interface or a textual language called aStruct. Both are
unique to Ambric’s tools. Figure 3 shows an example
of the graphical interface. It presents a graphical

representation of the program’s structural model, which can
be a good way to visualize a parallel process. However,
Ambric is aware that programmers have largely rejected
many previous attempts to promote graphical programming
tools, so this interface is strictly optional. It’s most useful for
programmers new to Ambric’s architecture. After learning
the ropes, they will probably switch to the aStruct language.

When using aStruct, programmers can express paral-
lelism by creating multiple instantiations (objects) of the
same class (object template). Keep in mind that the objects
themselves are written in single-threaded Java code—Ambric
doesn’t use Java’s standard Thread class to express paral-
lelism. Instead, programmers express parallelism by using
aStruct to instantiate multiple objects, then bind those

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 2. Local channels that connect neighboring processor cores also synchronize the cores in Ambric’s
massively parallel architecture. There’s no global flow control, so each core can run at a different clock
speed, as regulated by the channels. In this diagram, two special channel registers (X and Y) are com-
municating over a unidirectional channel. Downstream signal Xp is high when X has data; upstream sig-
nal Yc is high when Y is ready to accept data. The channel transfers data only when one register is ready
to provide it and the other register ready to receive it. Either register can stall the channel if necessary.

Xp
data

Yc

Transfer

X has data but
Y can’t consume

X has data,
Y can consume it

Y can consume
but X has not data

Transfer Transfer

X has data, and Y can
consume it, twice in a row

word3word2word1

Figure 3. Ambric’s proprietary software-development tools are based on the Eclipse
integrated development environment (IDE). The structural editor shown here allows
programmers to use an optional graphical interface that represents code objects as
blocks, with arrows indicating the channels. Programmers write code for the objects
in the conventional fashion, using a subset of Java or a proprietary assembler, then
can link the objects together for parallelism using this interface.

4

objects to the self-regulating channels. That binding is visible
in the 12 channel assignments in Figure 4, which shows the
textual aStruct code for the structure in Figure 3.

Channels Automatically Regulate the Flow
The simple example program in Figure 4 generates an
ordered list of prime numbers. Although it’s not the best way
to find primes, it’s a good challenge for parallel processing,
because the time required to evaluate each number varies
widely and unpredictably. Notice that the aStruct code in Fig-
ure 4 creates four objects of the PrimeGen class, which a pro-
grammer wrote in Java. A PrimeGen object tests the candidate
integers to determine which are prime numbers; true primes
eventually join other primes in an output stream. All
together, the program can evaluate four candidates and
return four results in parallel.

More important, the program orders the list of primes
by using channels to synchronize the parallel operations.
Synchronization is necessary because the number of itera-
tions required to test each candidate varies. An integer requir-
ing only a few tests to determine if it’s prime could bypass
another integer that requires more tests. If the channels didn’t

keep the parallel operations in sync, the list of primes would
be out of order. Figure 5 shows the source code for the
PrimeGen class.

FIFO buffers temporarily hold the primes until they are
ready to take their proper place in the joined output stream.
The buffers can’t overflow, because if they’re full, their input
channels automatically generate “back pressure” to stall their
associated PrimeGen objects from sending more results. Like-
wise, the output channels will stall the FIFO buffers from dis-
patching prime numbers into the final output stream until
the order is correct. Essentially, the buffers provide load bal-
ancing. The program could work without buffers, but the
PrimeGen objects would stall more often, because they
couldn’t begin testing another candidate integer until the pre-
vious candidate was ready to join the output stream in order.

By automatically stalling or releasing the registers at
each end, the channels regulate every step of the flow. Pro-
grammers get the benefit of parallel processing by writing
fairly conventional single-threaded Java code, then binding
multiple instances of objects to input and output channels in
parallel aStruct code.

Ambric’s subset of Java doesn’t stray far from Sun’s Java
standard. In fact, programmers can compile their Java source
code using Sun’s standard JAVAC compiler on a PC. The
resulting Java bytecode runs on Ambric’s functional simula-
tor, which itself is a Java program running on a PC. The sim-
ulator allows programmers to debug system behavior before
recompiling their code for Ambric’s proprietary architecture.

The alternative to Ambric’s approach would be to
invent a completely new language wholly unfamiliar to pro-
grammers. That’s basically what IntellaSys did for the
SEAforth parallel architecture mentioned above. Chuck
Moore, the brains behind SEAforth, reinvented the Forth lan-
guage he first introduced in the 1970s, creating VentureForth.
Either approach works, but today’s programmers will proba-
bly find Java and aStruct easier to learn than VentureForth.

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 4. This is a block of aStruct code, Ambric’s textual source code
for creating parallel structures of objects. This sample code is part of a
program that generates prime numbers. It instantiates four user-written
Java objects (PrimeGen and PrimeList), four FIFO buffers, and three
channel-join objects. Everything is connected by a structure of 12 input
and output channels. Figure 3 shows a graphical representation of the
same structure.

binding PrimeMaker Impl
implements PrimeMaker {

PrimeGen pg1 = {min = 3, increment =
4, max = IPrimeMaker.max};

PrimeGen pg2 = {min = 5, increment =
4, max = IPrimeMaker.max};

PrimeGen pg3 = {min = 7, increment =
4, max = IPrimeMaker.max};

PrimeGen pg4 = {min = 9, increment =
4, max = IPrimeMaker.max};

Fifo fifo1 = {max_size = fifoSize};
Fifo fifo2 = {max_size = fifoSize};
Fifo fifo3 = {max_size = fifoSize};
Fifo fifo4 = {max_size = fifoSize};
AltWordJoin join1;
AltWordJoin join2;
AltWordJoin join3;
PrimeList pl;
channel

c0 = {pg1.primes, f1.in},
c1 = {pg2.primes, f2.in},
c2 = {pg3.primes, f3.in},
c3 = {pg4.primes, f4.in},
c4 = {f1.out , j1.1},
c5 = {f2.out , j1.r},
c6 = {j1.out , j2.1},
c7 = {f3.out , j2.r},
c8 = {j2.out , j3.l},
c9 = {f4.out , j3.r},
c10 = {j3.out , pl.ins},
c11 = {pl.outs , primesOut};

}

Figure 5. This Java source code defines a class named PrimeGen.
Objects instantiated from this class can test candidate integers to
determine which are true prime numbers. If a candidate is prime, the
object sends out the number on a channel. If the candidate isn’t prime,
the object sends out a zero. Other objects downstream in Ambric’s
processor array collect the output of four PrimeGen objects to produce
the final output stream, an ordered list of prime numbers.

public void PrimeGen (Output Stream<Integer> primes) {
for (int candidate = min; candidate <= max;

candidate += 2*increment) {
int factor;
for (factor = 3; factor <= max; factor +=2) {

if (candidate % factor == 0) break;
}
if (candidate == factor) {// is prime

primes.write(candidate) ; // write out
}
else primes.write(0);

}
}

5

Using Brics for Building Blocks
Starting from this structural programming model, Ambric
designed the microprocessor array architecture. The mas-
sively parallel array consists of numerous replicated clusters
called brics. All the brics on a chip are functionally identical,
though some are slapped down as mirror-image blocks by
flipping the layout. Ambric designs a chip by a simple step-
and-repeat process of laying out an array of these brics, then
surrounding the array with standard I/O interfaces.

Components inside a bric may vary, depending on the
implementation. All the brics in the Am2045 contain 32-bit
streaming RISC processor cores with integer ALUs. Future
implementations could have different processor cores, more
cores per bric, more memory per core, wider datapaths,
FPUs, and other variations. Some variations might break
code compatibility, but that’s not a major drawback, because
they would aim for very different applications.

One improvement on Ambric’s roadmap is logic opti-
mization. To get the first chip out the door quickly, Ambric
synthesized all the logic in the Am2045’s brics, using standard
cells. For the next-generation chip, Ambric plans to tweak
some critical paths in the ALUs and memory interfaces, in
addition to a process shrink to 90nm. Hand-optimizing a lit-
tle logic would go a long way, because Ambric’s step-and-
repeat layout replicates the brics en masse.

Ambric designed two 32-bit RISC processors for the
Am2045’s brics. The simpler core is called the Streaming
RISC (SR) processor, and the beefier core is called the
Streaming RISC with DSP extensions (SRD) processor. SR
processors are intended to run smaller code objects,
particularly for control purposes or to prepare data for
additional processing by the more powerful SRD
processors. This division of labor—along with the
streaming RISC architecture—allows the SRD proces-
sors to sustain higher throughput.

Figure 6 shows a block diagram of the simpler
SR core. It has a single ALU capable of executing one
32-bit operation or two 16-bit operations per clock
cycle. For high code density, instructions are only 16
bits long. These instructions follow the traditional
RISC canon; most accept two 32-bit input operands
and generate a 32-bit result. There are eight general-
purpose 32-bit registers and 256 bytes of local memory
for caching instructions or data.

Figure 7 is a block diagram of an SRD processor.
It’s quite a bit more powerful than an SR core. It has 32-
bit-long instructions and three 32-bit ALUs—two in
series, one in parallel—allowing two-way, or even
three-way, instruction-level parallelism. Each of the
two series ALUs can execute one 32-bit operation, two
16-bit operations, or four 8-bit operations per clock
cycle. The third ALU is pipelined for rapidly executing
multiply-accumulate (MAC) and sum of absolute dif-
ferences (SAD) instructions. This ALU can execute one
32- × 8-bit operation or two 16- × 8-bit operations per

cycle. The SRD core has 18 general-purpose 32-bit registers
and a 64-bit accumulator, plus 1KB of local memory for
caching instructions or data.

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 6. Streaming RISC (SR) processor block diagram. This is the sim-
pler of the two proprietary 32-bit RISC cores that Ambric designed for
the Am2045 and future chips in the family. It executes 16-bit-long
instructions and has a small set of eight 32-bit registers. Note that these
registers are separate from the registers at each end of the input and
output channels connecting the cores together. Nevertheless, the
processor can access the channel registers as easily as it accesses the
general-purpose registers. Either type of register can hold input
operands for instructions and receive results.

input
channels

from
interconnect

output channels
to interconnect

IR

logical

mux

adder

ALU

64 wd
RAM

PC

R0

R1–7

out

Figure 7. Streaming RISC with DSP (SRD) processor block diagram. Unlike the
simpler SR processor, this core is built for heavy lifting. In addition to having
longer instructions and more ALUs and registers, it has special read/write chan-
nels that allow it to quickly fetch instructions and data from elsewhere on the
chip. An extended instruction set supports digital-signal processing.

+

input
channels

from
interconnect

output channels
to interconnect

IR

256 wd
RAM

PC

R0

R1–7

out

shifter

permute

adder

ALUS

logical

shifter

permute

adder

ALUM

logical

R
U

 R
/W

 p
or

t

mul

abs+/-
64 md

ALUE
msb

RU instruction port

6

Brics Are Clusters of Processor Cores
To make a bric, Ambric starts with a cluster of SR and SRD
processor cores, then adds more local memory and all the
interconnects and control structures necessary for rapid
communications. Next, Ambric flips the layout of that clus-
ter to make a mirror-image of it. Joining those two clusters
together makes a single bric. The final step is to assemble
numerous brics into an array and wrap the whole thing in
external I/O interfaces.

Figure 8 is a block diagram of the basic cluster (half a
bric). It has four processor cores—two SR cores and two
SRD cores—linked by a dense network of interconnect
channels. This four-processor cluster connects to four local
memories, each 1KB in size. Note that these memories sup-
plement the more tightly coupled memories associated with
each processor (256 bytes in each SR core, 1KB in each SRD
core). The four processors in the cluster can share the four
1KB memory banks in various ways, as the software requires.
The memory banks can store instructions or data and can
serve as FIFO buffers.

Figure 9 shows a complete bric surrounded by parts of
other brics. Flipping the layout for each half bric is impor-
tant, because it arranges the clusters of processor cores and
local memories very close together. Rapid communications
between neighboring brics allow the chip to use larger virtual
clusters of processors and memories, if necessary. If a com-
plex software object is too large to run on a single bric, the

processors of one bric can share the memory of neighboring
brics. This arrangement allows a processor to access up to
16KB of local memory—that is, 16 of the 1KB local memory
banks in four adjoining brics. (Again, this memory is in addi-
tion to the tightly coupled memory in each processor core.)

Ambric’s first chip, the Am2045, has a 5×9 array of
brics. That’s 45 brics, each with eight processor cores (four
SR cores and four SRD cores) and 8KB of local memory, for
a total of 360 processors and 360KB of SRAM. Add the
tightly coupled memories in the processors, and total on-
chip memory is 585KB. To finish the design quickly, Ambric
licensed industry-standard I/Os from other vendors. The
Am2045 has two DDR2-400 DRAM controllers, a four-lane
PCI Express controller, 128 general-purpose I/O ports
(100MHz), a serial flash-memory interface, an eight-bit
host-processor interface, and a JTAG debug port. Figure 10
shows a physical layout of the Am2045.

What remains to be seen is how efficiently Ambric’s
proprietary software-development tools map the application
software onto the processor array. Ambric’s Java and aStruct
languages and tools look easy to learn, and the microproces-
sor architecture is relatively comprehensible for a massively
parallel device. But between the source code and the hard-
ware is the critical back end of Ambric’s development tools.
First, the compiler must convert each object’s high-level
source code into efficient machine code. Then, it must dis-
tribute the executable code objects across the array of brics
in a manner that efficiently utilizes the 360 processor cores,
360 tightly coupled memories, and 360 local memory banks.
Managing off-chip resources (such as external DRAM for
large data streams) is another problem to solve.

Whether Ambric’s brand-new tools can accomplish all
those feats is the critical question. Mastering the interaction
between software and hardware is usually the biggest chal-
lenge for any extreme microprocessor architecture. This
question won’t be fully answered until developers start writ-
ing real-world programs for the Am2045.

Ambric’s Benchmarks Promise Performance
Until then, we do have some benchmark results from Ambric.
In theory, the Am2045’s maximum performance is 1.08
TOPS. That figure assumes that all 360 processors on the
Am2045 are running full blast at 333MHz. (The eight proces-
sors in each bric can execute a maximum 24 billion opera-
tions per second at that frequency.) Table 1 compares the per-
formance of some actual code running on an Am2045 with a
simulated larger version of the chip, with assembly code run-
ning on a Texas Instruments C641x-family DSP, and with a
Xilinx Virtex-4 LX100/LX200 FPGA. For this test, Ambric
optimized the Am2045’s compiled Java code with some
hand-tweaked assembly language.

Comparing exotic microprocessor architectures is always
difficult. They don’t have much in common, and industry-
standard benchmark suites don’t adequately measure their
performance. This is particularly true for massively parallel

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 8. This block diagram shows a basic cluster of four processor
cores, four local memories, and their associated interconnects and
control structures. This cluster is half a bric. By flipping the layout and
joining the two halves together, Ambric makes a whole bric. The final
chip has a large array of brics. The array can be almost any size, within
the limits of the fabrication technology.

InstSRD
CPU

RAM

SR
CPU

RAM

SR
CPU

RAM

CU

str

1KB
RAM

1KB
RAM

1KB
RAM

1KB
RAM

Inst
SRD
CPU

RAM

RW

RW

dy
na

m
ic

al
ly

 a
rb

itr
at

in
g

in
te

rc
on

ne
ct

RU

str
RU CU

str

str
RU CU

configurable and
dynamic interconnect
of Ambric channels

di
st

an
t

ne
ig

hb
or

Ambric channel

7

architectures, because benchmark programs are
usually small, single-threaded kernels with little
exploitable data parallelism. However, MPR has
covered several massively parallel processors with
similarities to Ambric’s architecture.

One intriguing competitor is MathStar, a
young fabless semiconductor company that
already claims a dozen design wins. (See MPR
7/24/06-02, “MathStar Challenges FPGAs.”)
MathStar calls its chip a field-programmable
object array (FPOA). It’s similar to an FPGA, but
developers work at a higher level of abstraction.
Instead of programming gate arrays, developers
use a massively parallel array of preconfigured
function units called Silicon Objects. Most Sili-
con Objects execute 16-bit integer instructions
or MACs in one clock cycle. MathStar’s first
FPOA has 400 Silicon Objects surrounded by
banks of SRAM and external I/O interfaces.

MathStar’s chip runs at 1.0GHz, so the
maximum theoretical throughput is 400 billion
operations per second. That’s less than half the
peak throughput of the Am2045 at three times
the clock frequency. Another disadvantage for
MathStar is that developers must program the
FPOA using a hardware-design language
(HDL), which requires developers to explicitly
schedule the tasks. In contrast, Ambric provides
a high-level software language whose objects
run on a timing-independent, globally asyn-
chronous array. However, it’s possible that
MathStar’s closer-to-the-metal development tools will do a
better job of mapping algorithms to a massively parallel array
than Ambric’s tools will. Both companies have shown exam-
ples of efficient digital-video processing. (Ambric’s example
uses 89% of the chip’s compute capacity.)

Ambric will face additional digital-video competition
from Connex Technology, another fabless-semiconductor
startup. (See MPR 1/9/06-01, “Massively Parallel Digital
Video.”) The first commercial implementation of Connex’s
fascinating architecture has 1,024 small processor cores that
can operate on an equal number of data words simultane-
ously. Unlike Ambric, Connex has extended an existing high-
level language with special constructs for expressing paral-
lelism. Programmers use a proprietary version of ANSI C
called Connex Programming Language (CPL). Connex seems
to be focusing more narrowly on digital video than Ambric is,
which may give Connex an advantage in its target market
(consumer digital TV). The learning curve appears similar
for both companies’ architectures and tools.

More Parallel-Processor Competitors
Don’t forget the Brits, who invented some primitive but pre-
scient parallel-processing machines to crack German ciphers
during World War II. Elixent, based in Bristol, England, is a

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Figure 9. This block diagram shows one complete bric in the center, surrounded by parts
of eight adjacent brics. Each bric consists of two processor-memory clusters, flipped to cre-
ate two halves that are mirror images of each other. In this diagram, halves of adjacent
brics are visible in the north, south, east, and west directions. In each of the four corners
of the diagram, only one-fourth of the diagonally adjacent brics is visible. Fast intercon-
nects allow the processor cores in one bric to access memory banks in adjacent brics.

RU

CU

SR SRD

SR
SRD

RU

RURU

CU

SR SRD

SR
SRD

SRD SR

SRD
SR

CU

RU

RU

SRD SR

SRD
SR

CU

CU

SR SRD

SR
SRD

SRD SR

SRD
SR

CU

RU

CU

SR SRD

SR
SRD

RU

RURU

CU

SR SRD

SR
SRD

SRD SR

SRD
SR

CU

RU

RU

SRD SR

SRD
SR

CU

CU

SR SRD

SR
SRD

SRD SR

SRD
SR

CU

CU

RU

SR SRD

SR
SRD

SRD SR

SRD
SR

CU

RU

Figure 10. Am2045 chip layout. Although Ambric synthesized the
brics in standard-cell logic, it’s still possible to distinguish them in the
sea of gates. The local memory banks and the edges of the replicated
brics are clearly visible.

8

five-year-old spinoff from Hewlett-Packard Labs. (See MPR
6/27/05-02, “Elixent Improves D-Fabrix.”) D-Fabrix is an
array of four-bit ALUs, multiplexers, registers, local memo-
ries, and switchboxes that work together in a massively paral-
lel on-chip fabric. Proprietary tools allow developers to con-
figure the fabric for their applications.

Elixent’s business model differs significantly from
Ambric’s. Whereas Ambric sells its chips as standard parts,
Elixent licenses D-Fabrix as a hard macro for SoC integration.
The size of the fabric depends on the implementation. The first
D-Fabrix chip is Toshiba’s ET-1, which has 1,152 ALUs.
Another early D-Fabrix adopter is Matsushita Electric. Elixent’s
customers have the flexibility to design a parallel-processing
array exactly the right size for their applications, but Ambric’s
chips are available off the shelf. Another consideration is that
D-Fabrix developers must use Verilog, VHDL, a special version
of C adapted for hardware design (Celoxica’s Handel-C), or a
data-visualization and algorithm-development tool (Math-
Works’ Matlab).

PicoChip Design is another U.K. company with a mas-
sively parallel architecture. PicoChip’s first device was the
PC101, unveiled at Embedded Processor Forum 2003. The

PC101’s PicoArray has 430 processors capable of executing
19.2 billion 16-bit MACs per second at only 160MHz. (See
MPR 7/28/03-02, “PicoChip Preaches Parallelism.”) Six
months later, PicoChip announced the PC102, which has
344 processors but more MAC units. It can execute 41.6 bil-
lion MACs per second at 160MHz—about 70% of the per-
formance of Ambric’s Am2045, albeit at half the clock rate.
(See MPR 10/14/03-03, “PicoChip Makes a Big MAC.”)

Although the PC101 and PC102 are communications
chips for cellular telephony and wireless networks, they’re
obviously suitable for other signal-processing applications.
Programmers can write software using an ANSI C compiler
and assembler, but they must explicitly specify signal flows
among the processors using structural VHDL. (The VHDL
has nothing to do with logic synthesis, because PicoChip’s
devices are off-the-shelf parts.) In contrast, Ambric’s cus-
tomers don’t need to explicitly set and balance signal flows
among the processors, because the special channels auto-
matically govern those communications.

The Dutch are weighing in, too. Silicon Hive, a
Netherlands-based subsidiary of Royal Philips Electronics,
has an exotic architecture based on ultralong instruction
words (ULIW). (See MPR 6/20/05-01, “Busy Bees at Silicon
Hive.”) It’s not a massively parallel architecture, but it’s
designed to exploit parallelism in the critical loops of target
applications. A single instruction word can stretch as long as
918 bits, which should intrigue developers whose algorithms
and data offer opportunities for extensive vector processing.

Like Ambric, Silicon Hive wants to replace high-end
DSPs and ASICs in data-intensive applications. The propri-
etary HiveCC compiler allows programmers to write signal-
processing code in C, without diving into assembly language.
However, Silicon Hive acknowledges that programmers
must use special intrinsic functions and pragmas to express
more instruction-level parallelism than the compiler can
find automatically.

Rough Road for Extreme Processors
In addition to all the architecturally similar (or similarly
exotic) competitors, Ambric is going into battle against con-

ventional programmable solutions—
high-end DSPs, FPGAs, ASSPs, multi-
core SoCs, configurable processor cores,
and even some general-purpose micro-
processors. We pity the project manager
who tries to evaluate all these alterna-
tives in the detail they deserve. Merely
comparing the massively parallel archi-
tectures and their proprietary develop-
ment tools is enough to boggle the
mind. It’s amazing that just a few years
ago, high-end DSPs like TI’s ’C64 family
were considered extreme architectures.
Today their VLIW architectures seem
almost mundane in comparison.

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

Ambric AM2045 Ambric AMxx70 Texas Instruments Xilinx Virtex-4
(45 BRICs) (70 BRICs) C641x DSP LX100 / LX200

IC Process 130nm 90nm 90nm 90nm
Core Freq 333MHz 450MHz* 1.0GHz 500MHz
Published
DSP Benchmarks
MACs
(16bx16b=32b)
SADs 240 billion/sec 485 billion/sec* 8 billion/sec n/a

60 billion/sec 125 billion/sec* 4 billion/sec 48 billion/sec

10x–25x 20x–50x* 1x n/a

Table 1. Despite having the disadvantage of an older fabrication process and slower clock frequency,
the Am2045 outperformed a high-end TI DSP and Xilinx FPGA when running loops of multiply-
accumulate (MAC) and sum of absolute differences (SAD) instructions. The 70-bric Ambric chip in
the second column is a next-generation simulation, extrapolated from the performance of the 45-bric
Am2045 chip. Ambric says that executable code for its processors is about one-third the size of TI’s
DSP code. (*Ambric’s estimate. n/a: data not available.)

P r i c e & Av a i l a b i l i t y

Ambric plans to have engineering samples of the
Am2045 in January 2007, with general availability fol-
lowing in 2Q07. Development boards with one or two
chips will be available in January. Ambric will offer three
additional chips based on the same die. By turning off
sections of the die that have manufacturing defects,
Ambric can obtain higher yields while still providing
usable (though less powerful) chips. The AM2045, with
360 processors, will cost $450 in 1,000-unit volumes.
Other chips in the family are the Am2035 (288 proces-
sors) for $345; the Am2024 (192 processors) for $225;
and the Am2012 (96 processors) for $99. For more
information about Ambric, visit www.ambric.com.

9

For a project manager, the easy way out is to ignore the
new extreme architectures in favor of conventional solutions.
In the old days, nobody ever got fired for buying IBM. Today,
the safe bets are probably DSPs or ASSPs from major vendors
like Analog Devices, Broadcom, or TI. But taking the safe
route may overlook a more-flexible, higher-performance,
lower-cost, lower-power architecture—albeit one that requires
more time to understand. A competitor that spends that addi-
tional time might design a better product. Such are the haz-
ards of architectural abundance.

Ambric is taking the right approach by starting with a
relatively straightforward programming model and apply-
ing it to a flexible, powerful architecture. To succeed, com-
panies like Ambric need as much expertise in tool develop-
ment as they have in hardware development. If Ambric’s
tools work as well as the company promises, they will
advance the state of the art for programming massively par-
allel arrays and give Ambric a fighting chance in the compe-
tition for design wins.

© I N - S T A T O C T O B E R 1 0 , 2 0 0 6 M I C R O P R O C E S S O R R E P O R T

Ambric’s New Parallel Processor

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

