@ Reed Electronics Group

MIGROPROLESSDHR

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE

XMOS REDEFINES SILICON

Software-Defined Chips Attack ASICs, ASSPs, FPGAs
By Tom R. Halfhill {8/6/07-01}

There seems to be no end to startups seeking alternatives to traditional processing tech-

nologies. Of course, the shortcomings of conventional devices are well known. ASICs are

expensive, time-consuming, and risky to develop. ASSPs are available to everyone, offering

less opportunity for differentiation. FPGAs are expensive to
buy in large volumes and more difficult to program.

XMOS Semiconductor—a two-year-old fabless semi-
conductor company in Bristol, England—is pushing an
alternative it calls “software-defined silicon.” In this concept,
a multicore array of general-purpose embedded-processor
cores uses hardware multithreading to run the control soft-
ware and application software under hard real-time con-
straints. At the same time, separate threads drive the chip’s
pins to emulate the required I/O interfaces—Ethernet, USB,
UARTs, 12C, and so forth. This combination of multicore
integration, deterministic multithreading, and software-
defined I/O allows a general-purpose microprocessor to per-
form the functions of an SoC, but without custom accelera-
tion hardware or dedicated I/O controllers.

The basic concept isn’t new. A few years ago, Ubicom,
a small Silicon Valley company, introduced chips that use
deterministic hardware multithreading for packet process-
ing and software-defined I/O. Ubicom’s Multithreaded
Architecture for Software I/O (MASI) brings more flexibil-
ity to standard-product silicon. (See MPR 4/21/03-01,
“Ubicom’s New NPU Stays Small.”) XMOS hopes to carry
the concept to higher levels of integration and performance
(and sales). Some, if not most, XMOS chips will be multi-
core designs capable of implementing 100Mb/s Ethernet
and even faster I/O interfaces in software while running a
real-time operating system and performing digital-signal
processing.

At this time, XMOS is revealing little about its under-
lying XCore microprocessor architecture. In July, the com-
pany emerged from stealth mode and began describing its
technology in general terms. XMOS plans to divulge more
details later this year, when the first silicon arrives from the
foundry. The initial chip is a multicore design fabricated in
a standard 90nm CMOS process. XMOS plans to begin sell-
ing chips next year at prices ranging from $1 to $10. At those
prices, XCore processors would compete favorably with
ASSPs and FPGAs—and, as standard products, they would
eliminate the need for some customers to develop ASICs.

No RTL or Assembly Required

At the heart of XMOS technology is a proprietary 32-bit
CPU architecture specifically designed for hardware multi-
threading, software-driven I/O, and high-level programma-
bility. Although some XMOS engineers hail from ARM and
other processor companies, XMOS says its CPU architecture
doesn’t imitate any existing architecture. It’s a clean-sheet
design, optimized for its duties, and it’s not intended to be
programmed in assembly language or register-transfer-level
(RTL) languages. Even the device drivers and other low-level
software that XMOS will provide are written in C, C++, and
a derivative called XMOS C (XC).

XC adds timing statements, hardware I/O operations,
hardware concurrency, and other extensions to the ANSI-
standard C language. For instance, XC allows a programmer
to specify that a certain operation will execute at a fixed

© IN-STAT <

AUGUST 6, 2007 <7

MICROPROCESSOR REPORT

2 XMOS Redefines Silicon

#include <assert.h>
#include "UartTransmit.h"

static unsigned g _bittime;
static unsigned g metaNumWords;

void UartTransmitSetup (unsigned bittime,
unsigned metaNumWords)
g bittime = bittime;
g_metaNumWords = metaNumWords;

}

unsigned UartTransmitByte (unsigned char byte,
unsigned time, outport txd)

{
unsigned 1i;
unsigned data = byte;
i= 0;
txd @ time =<< 0; // Start bit
time += g bittime;
for (i = 0; i < 8; i += 1)
{
txd @ time =<<> data;
time += g bittime;
}
txd @ time =<< 1; // Stop bit
time += g bittime;
return time;
!

void UartTransmit (unsigned char bytes][],
unsigned numBytes, outport txd, inport ctsTx,
outport rtsTx)
{

timer t;

unsigned time, i, index;

int ctsTxVal;

unsigned char byte;

rtsTx =<< 0; // Assert RTS

ctsTx =>> ctsTxVal; // Wait for CTS if needed
if (ctsTxVal == 1)

ctsTx =>s int ctsTx when (ctsTx == 0);

t =>> time;

time += g bittime;

for (i = 0, index = g metaNumWords << 2; i
< numBytes; i += 1, index += 1)

byte = bytes[index] ;
time = UartTransmitByte (byte, time, txd);

rtsTx =<< 1; // Deassert RTS

Figure 1. This example XMOS C (XC) code implements a UART transmit function.
Statements such as inport and outport refer directly to I/0O operations on the chip’s
pins. References to time values can use internal or external timers as sources, and
they can control 1/O operations at specified times or intervals. Additional XC exten-
sions support hardware-level concurrency, using either multithreading on a single
processor core or multithreading and multitasking on multiple processor cores.

interval, such as once every 20ms. A new select
statement is similar to a case statement, except
that it vectors execution to a particular block of
code whenever the chip receives specified events
from an I/O interface. These and other extensions
are necessary for hard real-time determinism and
programmable I/O, which are central to the con-
cept of software-defined silicon. Figure 1 shows
an example of XC code.

XC doesn’t go quite as far as other recent
variants of C, such as System C. It’s still a language
primarily for writing software, not for describing
hardware (except I/O interfaces). Programmers
may use standard C or C++ to write software that
doesn’t require strict timing. Indeed, as Figure 2
illustrates, a typical project will have modules
written in C, C++, and XC, depending on the
purpose of the code. XMOS will provide new
software-development tools capable of handling
all project code within a single Eclipse-based inte-
grated development environment.

In their source code, programmers explic-
itly assign threads to various hardware-I/O and
software tasks. In effect, these assignments manu-
ally partition the XCore processing resources. The
processors guarantee each thread a minimum
level of performance, and threads consume no
power when idle. With the help of cycle-accurate
software simulators, programmers can determine
at design time whether a particular I/O or soft-
ware task is achieving the desired performance. If
a task falls short of its performance target, pro-
grammers can assign it additional threads. If a
particular XCore chip cannot deliver the required
performance, even after allocating all its threads,
developers can switch to a more powerful XCore
chip that runs at a faster clock rate or has more
processor cores.

XMOS is developing software libraries that
will help developers implement popular I/O
interfaces and carry out common software tasks.
XMOS is also seeking to port existing software
libraries to XCore. Preserving high-level pro-
grammability on an architecture that depends on
strict timing is an important part of XMOS tech-
nology. It remains to be seen how effectively the
XMOS development tools and libraries achieve
this goal.

Hardware Multithreading Is Vital

To guarantee hard real-time performance,
XCore processors use hardware multithreading,
not conventional multithreading as imple-
mented by an operating system. Essentially,
hardware multithreading is deterministic time

© IN-STAT

AUGUST 6, 2007

MICROPROCESSOR REPORT

XMOS Redefines Silicon 3

Key People at XMOS Semiconductor

At today's semiconductor startups, expertise in soft-
ware development and system software is as important as
expertise in microprocessor architecture. Here are the back-
grounds of three key people at XMOS Semiconductor.

James Foster: president, CEO, cofounder, board mem-
ber. Foster was formerly CEO of Oxford Semiconductor and
has held senior engineering and commercial roles at Lucent
and Lattice Semiconductor. He has a BS in electronic engi-
neering and an MBA from the Open University. Foster brings
semiconductor industry experience and academic credentials
to XMOS, as well as business knowledge.

David May: chief technology officer and cofounder.
May formerly headed the Computer Science Department at
Bristol University and worked for 16 years in the semiconduc-
tor industry, including such companies as Inmos and STMicro-
electronics. May was the architect of the Inmos Transputer
and helped design the Occam concurrent programming

slicing at the processor level. The processor can devote spe-
cific amounts of execution time to various tasks.

Each XCore processor core can simultaneously execute
eight threads and switch thread contexts on every clock
cycle. Although XMOS isn’t yet releasing details about the
XCore architecture, other processors implement hardware
multithreading by maintaining duplicate register files for
each thread. Instead of saving and restoring the contents of
a register file during a context switch, the processor merely
changes a pointer to the appropriate register file. There’s no
save-and-restore penalty for switching from one thread to
another. XCore almost certainly uses this technique.

Threads execute in round-robin fashion, and the
processor allots equal time to each thread. If eight threads
are running, each thread gets 12.5% of the processor’s exe-
cution time. If four threads are running, each thread gets
25% of the processor’s execution time,

language. He has 33 patents for microprocessor technology,
with more pending. In 1990, May was elected a Fellow of the
Royal Society for his contributions to computer architecture
and parallel computing. He is on the technical advisory boards
of several semiconductor companies. As a pioneer in parallel
processing and concurrent programming, May brings impor-
tant hardware-design and software-development experience
to XMOS.

Noel Hurley: vice president of marketing. Hurley was
formerly director of CPU product marketing at ARM, where
he was responsible for defining, promoting, and managing
new products. Hurley also served in senior sales and market-
ing roles during 11 years at ARM. Previously, he was a senior
applications engineer at Philips Semiconductors. He holds a
bachelor's degree (with honors) in electrical and electronic
engineering. Hurley's long tenure at ARM brings valuable
knowledge about the embedded-processor market to XMOS.

partition the task between two threads. For example, one
thread might handle low-level I/O operations while the
other handles the interface protocol and buffering. All
threads continue executing in strict round-robin fashion.
Some multithreaded processors, such as the new MIPS32
74K, have programmable thread-priority policies that
accomplish hardware multithreading somewhat differently.
(See MPR 5/29/07-01, “MIPS 74K Goes Superscalar,” and
MPR 6/4/07-01, “MIPS 74K Performance Update.”) Both
methods are valid; the XMOS method is simpler and more
closely resembles Ubicom’s model.

Simplicity is important, because XCore programmers
must statically assign threads to specific tasks at design time,
with help from the XMOS software-development tools.
With an XCore processor, the basic unit of performance
becomes a thread, not a clock cycle. Therefore, it’s essential

and so forth. Note that for the purposes Software Stacks

Driver Tasks Hardware Tasks

of this discussion, a “thread” isn’t neces- [Pure C/Ct+

C/C++ with System Calls XC

sarily a subprocess within a multi-

threaded program—it could be a single- ‘
threaded process. For instance, one
thread could be a device driver that drives
the I/O pins to define a UART. Another
thread could be a control program, such
as a real-time operating system. Another

E&—33C/C++ Header

&3 C/C++ Header 1
@ XCore Resource @ XCore
Interface Library Resources

XCore Resources |

thread could be a single-threaded applica- I

tion program. Still another thread could

be a subprocess within a multithreaded
application program.

Some processes may demand more
performance than a single thread can
deliver. In those cases, programmers may

Figure 2. Developers working with an XMOS XCore processor can use standard C and C++ to
write most of their software. Some software may call prewritten code libraries that XMOS pro-
vides. For modules that define custom 1/0 interfaces or that require strict timing, programmers
use XMOS C (XC), which adds extensions to C. XMOS development tools unite all these C
variants within an Eclipse framework.

© IN-STAT

<y AUGUST 6, 2007 < MICROPROCESSOR REPORT

4 XMOS Redefines Silicon

BN | <

5||o 5|5 “RE

's 1l Ks) alla = |=

XCore XCore
IOE Thread 1 ——| Thread 1 10C
10C Thread 2 —— Thread 2 10C
10C Thread 3 —— Thread 3 10C
10C Thread 4 ——| Thread 4 10C
[_toc] e [toc |
RAM RAM

10C Thread 5 ——| Thread 5 I0C
10C Thread 6 —— Thread 6 10C
10C Thread 7 —— Thread 7 10C
10C Thread 8 ——| Thread 8 10C
Super
1/0
— Block

Ol|0 ol |0 P [l

Aalla Aalla AR

~ ~

Figure 3. XLink is a new interconnect for XCore processors. It will unite multiple XCore processors on a single chip or span larger distances in multichip

and multisystem designs. With an XLink network, hardware multithreading can span multiple cores or multiple chips.

for programmers and development tools to understand the
performance available from each thread.

However, under software control, it’s possible to
dynamically reassign threads and rebalance workloads at
run time. This capability opens up all sorts of possibilities.
For instance, if an application doesn’t need to use a partic-
ular I/O interface for a while, it can divert those threads to
another task. An I2C interface could morph into a UART
merely by swapping device drivers. Software-driven I/O is
popularly called “bit bashing,” but XMOS avoids the term,
saying it evokes the bit-level manipulations performed by
microcontrollers that have narrow I/O ports and registers.
XMOS chips will have matching ports and registers that are
1, 4, 8, or 16 bits wide, reducing or eliminating the need for
low-level bit masking.

Until XMOS tests its first silicon, the company is reluc-
tant to release performance details. However, XMOS says ini-
tial XCore devices should execute 500 native mips per core—
or about 62 mips for each of the eight threads. XMOS says
this degree of performance will be sufficient to implement
a 100Mb/s Ethernet interface or even a High-Speed USB 2.0

interface (480Mb/s) in software. For DSP applications, a
16-tap finite impulse response (FIR) filter will be capable of
processing about seven million samples per second.

Multiple Processors Multiply Performance

Some applications will demand more performance than a
single XCore processor can deliver, so another important
piece of the technology is support for multicore chips and
multichip systems. A proprietary XMOS interconnect called
XLink allows multiple XCore processors to communicate
with each other. XLink networks can coordinate multiple
threads on a core, multiple threads on different cores, or
multiple threads on different XCore chips.

XMOS plans to release more details about XLink this
fall. As Figure 3 shows, XLink appears to be a crossbar bus
that joins two or more processor cores together in a tight rela-
tionship. The compiled object code is position independent,
so developers don’t have to know which core a specific thread
will run on—the software can distribute threads at run time.
However, if programmers wish, they can assign specific
threads to specific cores in advance.

© IN-STAT <

AUGUST 6, 2007

< MICROPROCESSOR REPORT

On-chip interconnects have different requirements than
chip-to-chip networks do. To accommodate the microscopic
distances of on-chip interconnects and the board-scale dis-
tances of multichip systems, XLink runs a single logical pro-
tocol on different physical interfaces. XMOS development
tools will need some knowledge of the network latencies to
distribute the threads intelligently. The tools will probably rely
on design-time software simulations to estimate the XLink
latencies in multichip or multisystem networks.

Chips Aren't the Whole Story

Although XMOS is withholding details about its propri-
etary CPU architecture for now, those details aren’t terribly
important. If XMOS delivers on its promises, customers
won’t have to bother with those details, because XCore is
designed for high-level programming at the thread level. Of
course, it will be interesting to learn how XMOS took
advantage of its rare opportunity to create a new CPU
architecture optimized for hardware multithreading on
multicore chips. But, given the fact that software-defined
silicon isn’t a new concept, the crucial question is whether
XMOS can create a product line of useful, affordable chips
adequately supported by processor cores, interconnects,
and software-development tools.

One hurdle is XC. Developers tend to resist vendor-
specific extensions to C, especially when those extensions
bind their software to a proprietary CPU architecture
launched by a startup. XMOS recognizes this hurdle and is
writing system libraries of low-level device drivers and I/O
interfaces in XC so that developers can write most of their
application software in standard, portable C or C++. In
addition, XMOS hopes to port some widely used software
libraries to XCore. XMOS says it created the XC extensions
only because there’s no industry-standard open alternative—
a common complaint.

Another hurdle for XMOS is software-development
tools. XMOS is promising a lot for its tools. If thread allo-
cation isn’t stone-dumb simple, the chore will quickly get

XMOS Redefines Silicon 5

Price & Availability

XMOS Semiconductor plans to introduce the first
XCore chips next year at prices ranging from $1 to $10.
Additional details will be announced this fall.

For more information visit: www.xmos.com.

out of hand as the level of integration rises. XMOS is
already talking about “arrays of cores”™ —implying that the
initial multicore chips will lead to manycore or massively
parallel XCore designs. For customers, the quality of the
software-development tools soon becomes more important
than the capabilities of the hardware.

Fortunately for XMOS, the basic concept of software-
defined silicon is fundamentally sound. Indeed, the evolu-
tion of computing is largely a process of migrating more
functions from hardware to software. As processors grow
more powerful, I/O functions that once required dedicated
hardware (on or off chip) can be comfortably handled in
software. Dedicated hardware is still more efficient in high-
volume applications, but many end-user products never
attain those volumes. Fierce competition is one factor—
before a product can amortize its expensive ASICs, numer-
ous imitators often appear. Another factor is rapid market
turnover—many consumer-electronics products have shelf
lives measured in months, not years. Industry standards
keep progressing, too. A programmable chip that can mag-
ically morph its I/O interfaces at design time or even at run
time can postpone early obsolescence.

Therefore, the outlook for XMOS depends on how
well the company executes all facets of its broad strategy.
Designing a multithreaded processor is almost the easy
part. XMOS will succeed or fail on the strengths of its mul-
ticore integration, software-development tools, extended C
language, and system software. <

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

© IN-STAT <y

AUGUST 6, 2007 <7

MICROPROCESSOR REPORT

