@ Reed Electronics Group

MIGROPROLESSDHR

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE

PARALLEL PROCESSING FOR THE X86

RapidMind Ports Its Multicore Development Platform to x86 CPUs
By Tom R. Halfhill {11/26/07-01}

The Holy Grail in computer science is a high-level compiler that automatically extracts

hidden parallelism from existing source code and efficiently distributes the workloads on

the latest multicore processors. Ideally, programmers need not rewrite any code, and the

compiler transparently targets microprocessors with any
number of cores.

Dream on. Conventional serial code doesn’t surrender its
hidden parallelism (if, indeed, any exists) without a fight. True,
a good vectorizing compiler can find some small-scale data
parallelism, assuming the processor has vector-math instruc-
tions. Optimizing compilers can find some instruction-
level parallelism when targeting processors with superscalar
dispatching and other fancy features. And microprocessors
with dynamic branch prediction, speculative execution, and
out-of-order execution can find a little more parallelism at
run time. But none of these techniques fully exploits the rap-
idly expanding resources of the latest multicore designs.

Due to those limitations, programmers must rewrite at
least some of their source code to explicitly expose parallelism
to the compiler or the processor. It’s not the ideal solution. But
for now—and possibly forever—it’s the best way to keep mul-
tiple processors busy.

RapidMind is one of several parties entering the market
for parallel processing. Founded in 2004, RapidMind is a pri-
vately funded company based in Ontario, Canada. The Rapid-
Mind Multicore Development Platform does require pro-
grammers to rewrite the data-intensive portions of their
code, and it also requires the target system to run a hardware-
abstraction layer between the application program and the
microprocessor. In return for those compromises, Rapid-
Mind claims big benefits. Some tasks run five to ten times
faster, and, in some cases, performance can scale faster than

the rising number of processors. In addition, the parallel code
is highly portable—programmers needn’t rewrite it for each
new multicore processor or multiprocessor system.

Previously, RapidMind’s platform worked only with
IBM’s Cell Broadband Engine (Cell BE) and the graphics
processors from AMD/ATI and Nvidia. On November 5,
RapidMind announced Multicore Development Platform
v3.0, which targets the popular multicore x86 processors from
AMD and Intel—a big step. This move opens up new oppor-
tunities for RapidMind in general-purpose computing, such
as desktop publishing. Until now, RapidMind focused mainly
on high-performance computing: financial modeling, image
processing, data mining, scientific analysis, simulations,
broadcast-quality multimedia generation, 3D visualization,
transactional databases, and so forth.

Mainstream PC software has comparatively little
inherent parallelism, so RapidMind’s platform is less useful
for general productivity applications. But RapidMind’s
embrace of the x86 is a boon for heavy-duty number
crunching on commodity hardware.

RapidMind's Parallel-Processing Platform

In some ways, RapidMind’s approach to parallel processing
resembles that of PeakStream, which Microprocessor Report
covered last year. (See MPR 10/2/06-01,“Number Crunching
With GPUs.”) Both technologies made their debut on the
highly parallel math engines of graphics processors; both
technologies require programmers to explicitly expose data

© IN-STAT

<7 NOVEMBER 26, 2007 <~

MICROPROCESSOR REPORT

2 Parallel Processing For the x86

C++ Application

RapidMind API RapidMind API

RapidMind Code Load Data Diagnostics
Platform Optimizer Balancer Manager 8
::;f;rst” AMD | Intel AT | Nvidia CL?IAQE Aézlrlc;g' Sony
Modules cPu CPU GPU GPU Blade |Accel. Bd PS3

Example 8-core
Processor

Target Multicore Processor

Figure 1. RapidMind's Multicore Development Platform v3.0. A hardware-abstraction layer insulates application code from the underlying processors,
automatically handling the load balancing and other low-level functions necessary for parallel processing. At the lowest layer, the processor-support
modules are interchangeable software “drivers” that adapt the higher layers to different microprocessor architectures—now including the x86.

parallelism in the source code, but without explicit thread-
ing; both technologies use some just-in-time (JIT) compila-
tion to optimize the parallel code; and both technologies
provide an application programming interface (API) that
largely automates the task of distributing execution among
multiple processors or cores. (Last June, Google acquired
PeakStream for an undisclosed sum and withdrew its prod-
ucts from the market.)

There are important differences, however. Whereas
PeakStream provided a fixed API library of common math
functions callable from C++, RapidMind allows program-
mers to define their own functions in C++. Indeed, user-
defined functions are so central to RapidMind’s technology
that the company has created new C++ constructs for them.
As a result, C++ code written for RapidMind’s platform dif-
fers more visibly from plain-vanilla C++ than PeakStream
code does. In both cases, however, programmers expose data
parallelism by manipulating specially typed arrays.

Before diving into the source code, it’s helpful to
understand how RapidMind’s Multicore Development Plat-
form works. Figure 1 illustrates the platform’s software
architecture. A vital point is that the parallel-processing code
in the application program runs on an abstraction layer that
insulates the code from the hardware. (Conventional serial
code runs normally.) Thanks to this virtual-machine layer,
the parallel-processing code isn’t specific to any particular
microprocessor architecture or microarchitecture, and it’s
not bound by the number of processors or cores. Code writ-
ten today for a dual- or quad-core processor can run without
modification on future designs with many more processors.

(RapidMind supports the latest Nvidia GeForce G80 graphics
processors that have 128 shaders, which can serve as general-
purpose ALUs.)

Figure 2 illustrates the versatility of RapidMind’s
abstraction. Although programmers must write special C++
code to express data parallelism, once the code is finished, it
can run on several different types of parallel-processing sys-
tems. These systems can achieve parallelism using multiple
discrete processors, a host processor assisted by an accelera-
tor, one or more multicore processors, or multicore proces-
sors with homogenous or heterogeneous cores. Depending
on the type of application and target hardware, RapidMind’s
run-time package occupies about 5MB of system memory.

Another key point of RapidMind’s technology is that it
doesn’t use multithreading—at least, not in the common
sense. At the hardware level, of course, multiple streams of
execution are running on multiple processors. But program-
mers needn’t explicitly define or manage threads when writ-
ing their code. It’s rather like writing high-level code without
worrying how a superscalar processor will divide a single
instruction stream into multiple streams for execution in the
parallel pipelines.

In RapidMind’s scheme, the abstraction layer automat-
ically divides and distributes a task among multiple proces-
sors. (The load balancer seen in Figure 1 is primarily respon-
sible.) By eliminating the need for explicit multithreading,
RapidMind simplifies parallel programming and squashes
bugs before they breed. The company claims its technology
abolishes deadlocked threads and thread-synchronization
problems—frequent sources of trouble in conventional

© IN-STAT

<7 NOVEMBER 26, 2007 <y

MICROPROCESSOR REPORT

Single Source

sy

..'4»,5 -,

L L7 X

AT I N

LTI

LT
L

27

% Multicore CPU

Parallel Processing For the x86 3

Heterogeneous
_Multicore CPU

Figure 2. Parallel processing with RapidMind's platform. C++ code written with RapidMind's technology can run on several different kinds of par-
allel-processing systems, whether they have multiple single-core chips, multicore chips, or a combination of processor types. The processor cores
may be homogenous or heterogenous. RapidMind's hardware-abstraction layer shields the application code from these low-level details.

multithreaded code. (See MPR 4/30/07-02, “The Dread of
Threads.”)

C++ Functions Express Parallelism

As mentioned above, one of the prices for parallelism when
using RapidMind’s technology is that developers must write
special C++ code to expose the data parallelism in their soft-
ware. When modifying existing serial code, the extent of the
rewrite depends on the degree of parallelism extracted. If that
price seems high, consider that recoding will be necessary for
virtually any software that has a significant amount of
exploitable parallelism, whether using RapidMind’s platform
or an alternative.

To ease the task, RapidMind adds new classes and con-
structs to C++. Programmers can use Microsoft Visual C++ v7
or v8 with Windows, or GNU C Compiler (GCC) v4 with
Linux, after including RapidMind’s header file and linking to
RapidMind’s API library. Although the library provides many
predefined functions, programmers will probably write most
of their own functions, often calling upon the predefined ones.
As with conventional C/C++ functions, the special RapidMind
functions can call any other functions, including each other.

A vital part of the RapidMind run-time package is a JIT
compiler that converts the special parallel-processing func-
tions into native code at run time. RapidMind’s JIT com-
piler is similar to a Java JIT compiler, with two important

exceptions. The programming language is C++, not Java,
and portions of the application program written in conven-
tional serial code are statically compiled by the regular
C/C++ compiler, as usual. Only the parallel code in the spe-
cial RapidMind functions is dynamically compiled.

This combination of static and dynamic compilation
allows serial code to run conventionally while parallel code
adapts at run time. For instance, parallel code written for a
dual-core processor will run without modification on a quad-
core processor and will take advantage of the additional cores.
At run time, the RapidMind abstraction module discovers the
additional processing resources and invokes the JIT compiler
to automatically generate the appropriate executable code. By
swapping the abstraction module for another module, it’s
possible to run the same parallel code on a different CPU
architecture without static recompilation. (The serial portion
of the application program written in regular C/C++ must be
recompiled, of course.) Moreover, dynamic compilation
allows RapidMind to use performance-enhancing techniques
applicable only at run time, including optimizations based on
system feedback. RapidMind’s run-time module has instru-
mentation for this purpose.

To write the parallel-processing functions, program-
mers must express an algorithm as operations on specially
typed data arrays. To help programmers do this, RapidMind
has created the C++ classes Value and Array to provide a

© IN-STAT

<7 NOVEMBER 26, 2007

MICROPROCESSOR REPORT

4 Parallel Processing For the x86

familiar interface to C++ programmers. Both classes define
objects that are data containers. The Value class is an N-tuple
containing N number of values of type T, where T is a
numeric datatype (signed or unsigned integers of various
lengths, floating-point numbers of various lengths, and
Booleans). For example, Value1f contains a single-precision
floating-point value (like a float in C). Value3f is a three-
tuple (triple) single-precision floating-point value—three
floats in one container. Programs can manipulate these values
using standard C operators and functions, and RapidMind’s
API library provides additional functions.

RapidMind’s Array class defines objects whose elements
are Value objects. Unlike a Value object, an Array object is
multidimensional (up to three dimensions) and can change
size at run time. Standard operators and functions provide
the usual random access to array elements. Convenient pre-
defined functions like grid, slice, offset, and stride allow pro-
grams to access subarrays in various ways without resorting
to troublesome pointer arithmetic.

Writing Parallel-Processing Code
As relatively minor extensions of ordinary datatypes and
arrays, RapidMind’s Value and Array classes should be
quickly grasped by C++ programmers. The key to Rapid-
Mind’s technology is the Program class, which contains the
special parallel-processing functions compiled at run time.
These functions execute a sequence of operations, much as
a macro does—including operations that can run in paral-
lel on multiple processors. The keywords BEGIN and END
define the boundaries of the parallel-processing functions.
Here is an example of a simple Program object:
Value3f n;
Program p = BEGIN {
In<Value3f> v;
OQut<Value3f> h;
h = normalize(v + n);

} END;

The first line declares a tuple (n) of three single-precision
floating-point values. Note that this nonlocal variable will be
accessible by the dynamically compiled Program object, even
though it’s declared in the statically compiled portion of the
program. The second line creates the new Program object (p)
and begins defining a function for dynamic compilation and
parallel processing. The next two lines declare local variables
for input (v) and output (h) arrays, both of the Value3f type.

The fifth line does the real work. It applies a RapidMind
predefined function (normalize) to the input array (v) while
adding the previously declared tuple (n) to each tuple in the
array. This example demonstrates that Program objects can use
standard C/C++ operators on Value and Array types. In this
case, each addition adds the three floating-point values in the
nonlocal tuple (n) to the three floating-point values in each
array element. Then, after normalizing the sums, the same line
of code stores the result (another Value3f tuple) in the output
array (h). The final line of code ends the Program function.

Although this Program object calls a predefined func-
tion (normalize) in RapidMind’s API, it could just as easily
call a user-defined function written in plain C++:

Value3f normalize(Value3f vv) {

return vv / length(vv);

}

Once a Program object is defined, it can operate on tuples
or arrays. For example, assume that a program declares the two-
dimensional arrays V and H, both Array objects populated
with objects of the type Value3f. The following code applies
the operation defined in Program p to all elements of array V
(one million elements), returning the results in array H:

// array dimension can be 1, 2, or 3

Array<2,Value3f> V(1000,1000);

// initialize V with data here

Array<2,Value3f> H;

H=p\);

Invoking Program p on a Value3f array with one million
elements will generate approximately ten million floating-
point operations. (For each element in the array, there will be
three adds, then a Euclidean-length computation requiring a
dot product with three multiplies and two more adds, then a
reciprocal square root, and then a multiply.) The results are
Value3f tuples.

At run time, the JIT compiler dynamically compiles
Program p for the target system, taking into account the
number of processors available, their microarchitectures,
and other factors. In a homogenous dual-processor system
(which could be a dual-core microprocessor or two discrete
microprocessors), the RapidMind load balancer might run
half of those ten million operations on each processor. In a
quad-processor system, the load balancer might run a fourth
of those ten million operations on each processor. In prac-
tice, the load balancer is smarter than that. It can distribute
the workload among heterogeneous processors according to
their capabilities, and it may shift some work away from the
processor that’s running the operating system and the
RapidMind run-time package itself.

Dynamic flow control is another important part of this
concept. RapidMind has added special keywords for branch-
ing (IF, ELSE, ELSEIF, etc.) and looping (FOR/ENDFOR,
WHILE/ENDWHILE, DO/UNTIL) that mimic the standard
C/C++ keywords for those operations. The new keywords
allow dynamically compiled Program objects to make deci-
sions and perform iterative operations independently of flow
controls in the statically compiled code.

In effect, RapidMind has created a language within a
language for writing programs within a program. Instead of
frightening programmers with the unfamiliar syntax of a
wholly new language, RapidMind imitates familiar C++ syn-
tax. RapidMind’s philosophy is that parallel processing must
be easy enough for all programmers to grasp, not just a lab
exercise for computer scientists.

The dynamism of the RapidMind platform is vital,
because it allows programmers to write parallel code that’s

© IN-STAT

<7 NOVEMBER 26, 2007 <>

MICROPROCESSOR REPORT

independent of the underlying microprocessor architecture
and of the system’s parallel-processing resources. The
source code shown in this example can run on an AMD or
Intel x86 with one or more cores, an IBM Cell BE with nine
cores, or an ATT or Nvidia graphics processor with dozens
of cores. Existing serial code written in regular C/C++ can
remain undisturbed; only those portions of existing pro-
grams that offer opportunities for data parallelism need
rewriting. And once written, the parallel code should be
future-proof.

Benchmarking Parallel Performance

RapidMind hasn’t yet ported industry-standard bench-
mark suites to its platform, but the company does offer
benchmark results for some problems commonly tackled
in high-performance computing. One example is the
Black-Scholes model, which stock analysts use to determine
the fair market value of an equity. One popular solution to
the model is a Monte Carlo analysis. Figure 3 compares
serial C++ code for this solution with RapidMind’s parallel
C++ code. The serial code isn’t a straw man—it was written
and hand-tuned by experienced Hewlett-Packard program-
mers. (For more information about these tests, see the joint
HP/RapidMind white paper referenced in the “Price &
Availability” box.)

Figure 4 shows one result of this benchmark test. The
RapidMind code runs nearly eight times faster on an Intel
Xeon Core 2 Quad (2.66GHz) than HP’s code does when
running on one core of the same processor. Usually, pro-
grammers struggle to achieve linear performance gains when
writing code for multicore processors, but in this case, Rapid-
Mind achieved 2x linear performance. This result demon-
strates that RapidMind’s platform does more than simply
distribute a workload among multiple processors—it also
applies other optimizations, some of them possible only with
the run-time knowledge that comes with dynamic compila-
tion. Of course, it’s logical to assume that RapidMind chose
this example to show the Multicore Development Platform in
the best light. Also, the results don’t distinguish between the
performance achieved by parallelizing the code and by apply-
ing other optimizations. Until better benchmarks are avail-
able, MPR is skeptical that the results are always this good.
Nevertheless, RapidMind’s example does show that better-
than-linear improvement is possible.

Figure 5 compares the performance of serial and parallel
code on x86 processors to RapidMind’s parallel code running
on an Nvidia GeForce 8800 GTX graphics card, using the
shaders as general-purpose parallel-processing engines.
(RapidMind’s platform also targets AMD/ATT graphics cards,
such as the x1900XT.) The Nvidia G80 graphics processor
handily beats a 2.66GHz Intel Xeon Core 2 Quad processor—
which is why RapidMind continues to support GPUs for
high-performance computing.

To scale performance at a greater-than-linear rate, the
RapidMind platform optimizes the software in several ways.

Parallel Processing For the x86 5‘

Typical C++ Code

for (int i = 0;

}

i < num_experiments; i++) {
loat(i + 0.5f) / num_experiments;

float il f
bitreverse(i + 1);

float 12

boxmuller_shirley(il, i2,

phi_const[1]);

phi_const[0],

sl _const[0]
sl_const[1]

S_ 0 * expf(R + SDT * phi_const[0]
S_0 * expf(R + SDT * phi_const[1]

)
)

CT = std::max(sl_const[0] - K, 0.0f);
sumCT = sumCT + CT;

sumCT2 = sumCT2 + CT*CT;

CT = std::max(sl_const[1l] - K, 0.0f);
sumCT = sumCT + CT;

sumCT2 = sumCT2 + CT*CT;

//

(g

RapidMind-enabled C++ Code

Program blackscholes =
In<Valueli> i;

Value2f hammersley =
num_experiments,

Value2f phi =

Value2f S =
Value2f CT = rapidmind::max(0.0f,

Out<Value2f> CT_CT2 =
} END;

Value2f sum_of_CT_and_CT2 =

BEGIN {

join((i + 0.5f) /
bitreverse (i + 1));
boxmuller_shirley(hammersley);

S_0 * exp(R + SDT * phi);
S - K

join(sum(CT), dot(CT, CT));

sum<Value2f>(blackscholes
rid (num_experiments)));

Figure 3. Comparison of C++ code before and after rewriting for Rapid-
Mind's Multicore Development Platform. These routines solve a Black-
Scholes model used by stock traders. Hewlett-Packard wrote the single-
threaded code and hand-optimized it for Intel x86 processors. RapidMind
wrote the parallel code using new constructs added to C++.

As seen in the code examples above, the special Program func-
tions primarily expose large-scale data parallelism. Program-
mers can also exploit data parallelism on a smaller scale by
using the single-instruction multiple-data (SIMD) instruc-
tions commonly found in CPU instruction sets, such as the
MMX and SSE extensions in x86 processors. (RapidMind’s
documentation refers to “SIMD within a register [SWAR] vec-
torization,” which simply means that some SIMD instructions
operate on multiple data elements packed into a single regis-
ter.) Exploiting data parallelism in these ways usually requires
programmers to exert manual labor, although a good vector-
izing compiler can help. RapidMind says its v3.0 compiler
automatically performs some vectorization.

Instruction-level parallelism can be largely automated
by the compiler and the microprocessor. An optimizing com-
piler rearranges instructions to take advantage of superscalar
pipelines and other microarchitectural features of the target

© IN-STAT

<7 NOVEMBER 26, 2007 <~

MICROPROCESSOR REPORT

6 Parallel Processing For the x86

160

140

N
]
o

N
o
o

(Performance)
[oe]
=)

[
o

Millions of Experiments per Seconds

40
20 17.0
Single Core Quad Core
(Non-RapidMind C++) (RapidMind)

Peak CPU Performance by Implementation

Figure 4. Performance comparison of serial C++ code vs. RapidMind
C++ code. These are the benchmark results obtained by running the
subroutines in Figure 3. The Y-axis shows the number of Black-Scholes
“experiments” (speculative evaluations of stock prices) per second.
In this example, RapidMind's performance scales at a greater-than-
linear rate.

CPU. Most advanced processors can dynamically predict
branches, reorder the instruction stream, and speculatively
execute instructions at run time. Some processors support
hardware multithreading and/or simultaneous multithread-
ing, using superscalar pipelines and multiple banks of regis-
ters. The drawback of instruction-level parallelism is that it’s
notoriously difficult to find in most software. Rapidly dimin-
ishing returns limit the application of these techniques, which
is one reason for the trend toward multicore processors.

Despite the limitations of instruction-level paral-
lelism, RapidMind tries to leverage any mechanisms for
parallelism it can find. The RapidMind programming
model focuses on large-scale data parallelism, but the run-
time module optimizes the software for the specific
microarchitecture of the target processor, using any tech-
niques available.

A Realistic Approach to Parallelism

RapidMind’s Multicore Development Platform isn’t the Holy
Gralil, because it relies on writing or rewriting software to
explicitly expose data-level parallelism. The perfect solution
would be a really smart compiler that does all the work
automagically. But waiting for the perfect solution could keep
a software developer out of the loop for a long time. The
search for the Holy Grail of compilers might take as long
as...well, the search for the Holy Grail.

Parallel processing isn’t new, of course. Computer scien-
tists have been wrestling with it since the 1950s. It seems new
to the mainstream software-development community only
because Moore’s law is shrinking multiprocessor systems onto

2397.0

160

140

120+

(Performance)
N
© o
2

o
°

Millions of Experiments per Seconds

40+
20——17.0
Single Core Quad Core GPU
(Non-RapidMind (RapidMind) (RapidMind)
C++)

Peak CPU Performance by Implementation

Figure 5. Performance comparison of serial C++ code vs. RapidMind
C++ code on x86 processors and an Nvidia GeForce 8800 GTX graph-
ics card. RapidMind harnessed the shaders in Nvidia's G80 graphics
processor as general-purpose processing engines, delivering stellar
performance in this Black-Scholes benchmark test. The x86 processor
was an Intel Xeon Core 2 Quad. As in Figure 4, these are the results
of running the subroutines in Figure 3, and the Y-axis shows the num-
ber of Black-Scholes “experiments” (speculative evaluations of stock
prices) per second.

individual chips, at a time when rising power consumption is
putting the brakes on clock-frequency scaling. Now, even
small embedded systems are becoming multiprocessor sys-
tems. Going forward, multicore processors are the only way to
continue applying Moore’s law to microprocessors. Suddenly
everyone, not only computer scientists, worries about writing
parallel software.

RapidMind takes a broad approach to parallelism that
seizes upon every available technique. It’s not surprising that
the biggest gains require the most labor. It’s hard to beat the
brain of a human programmer who is intimately familiar
with the workings of an algorithm. Some alternative solu-
tions require programmers to learn a completely new pro-
gramming language. Although a new language, once learned,
may be more efficient than C++, RapidMind recognizes the
inertia of the software-development community. By extend-
ing familiar concepts in C++, RapidMind lowers the learning
curve and reduces the anxiety of adopting something new.

Hardware abstraction is a critical part of RapidMind’s
technology. It allows parallel code written today for a dual-
core processor to run tomorrow on a quad-core processor—

© IN-STAT

<7 NOVEMBER 26, 2007 <y

MICROPROCESSOR REPORT

RapidMind Wins HPCwire
Awards at SC07 Conference

In mid-November, RapidMind won two awards at the
2007 International Conference for High-Performance
Computing, Networking, Storage, and Analysis (SC07) in
Reno, Nevada. RapidMind won the HPCwire Editors'
Choice Award for the Most Significant New HPC Software
Product and was named one of the Top Five Companies
to Watch in 2008.

HPCwire is a popular online publication covering
high-performance computing. The HPCwire Readers’ and
Editors’ Choice Awards are determined by online polling
and by a selection process involving HPCwire editors and
industry luminaries. For more information about the
awards, see:

o www.hpcwire.com/hpc/1885812.html|

and someday on an eight-core processor and beyond. That’s
huge, because a programming model that binds source code
to the number of cores imposes built-in obsolescence. Java,
too, relies on hardware abstraction, but writing parallel code
in Java requires programmers to manually create and man-
age threads. Performance depends on the number of threads
and how effectively the Java virtual machine maps threads to
cores. RapidMind’s platform lifts the burdens (and dangers)
of threading from the programmer’s shoulders.

One potential drawback of using RapidMind’s technol-
ogy is the unexpected longevity of program code. Once writ-
ten, debugged, and proven in the field, code tends to live a
long time—often much longer than the original developers
intended. Although the Y2K scare of the late 1990s was
largely overblown, it provided a surprising windfall of post-
retirement income for Cobol programmers. Code written
for RapidMind’s platform will remain viable for only as long
as RapidMind maintains the platform. If RapidMind disap-
pears next year, what will customers do? A similar question
haunts PeakStream’s early adopters, after that company’s
acquisition by Google.

Parallel Processing For the x86 7

Price & Availability

RapidMind’s Multicore Development Platform v3.0 is
available now for x86 processors. It also supports IBM's
Cell BE and graphics processors from AMD/ATI and
Nvidia, including AMD’s new FireStream 9170. The
RapidMind platform includes a linkable function library,
enhancements to C++, and a run-time module for the tar-
get microprocessor architecture. Pricing is based on the
number of processors or sockets on which customers
deploy the platform, but RapidMind doesn't publicly dis-
close specific prices. For more information, follow these
links:

General information:
e www.rapidmind.com

White paper, “Data-Parallel Programming on the
Cell BE and the GPU using the RapidMind Development
Platform,” by Dr. Michael D. McCool, cofounder and chief
scientist:
o www.rapidmind.com/pdfs/WPdprm.pdf

Joint white paper by Hewlett-Packard and Rapid-
Mind, “Performance Evaluation of GPUs using the Rapid-
Mind Development Platform":
e www.rapidmind.net/case-gpu.php

Other case studies:
e www.rapidmind.net/case-studies.php

One solution is for RapidMind to make its platform as
solidly entrenched as Java. But as a small startup, RapidMind
is nowhere near as influential as Sun Microsystems. Another
solution might be an open-source version of the platform,
perhaps placed in escrow, should the need arise.

Naturally, early adoption of any technology has risks.
Sometimes, the advantages outweigh the risks, even if the
advantages are short-lived. Judged on its technical merits,
the RapidMind platform definitely has advantages. It’s a
modern, intelligent model for parallel processing. That model
will probably survive in one form or another, regardless of
RapidMind’s fortunes. <

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

© IN-STAT

<7 NOVEMBER 26, 2007 <~

MICROPROCESSOR REPORT

