
© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

The real problem with multicore processors is too many
development tools—and the tools are often difficult to learn
and use. What programmers actually seem to want is just one
tool. It would work with the most popular CPU architec-
tures, let programmers write serial code in plain-vanilla C,
automatically extract parallelism from their code during
compilation, and automatically exploit the additional cores
in future processors.

Well, sure, we’d all like that. And we would also like an
electric car that carries six people, runs 500 miles on a quick
charge, and costs $15,000. Maybe it’s not impossible, but it’s
not imminent, either.

Back to reality. We have covered several software-
development tools for multicore processors in Microprocessor
Report, usually while describing the microprocessors they
target. These tools fit three categories:
• Tools for a single (usually specialized) CPU architecture.
• Tools that use hardware abstraction to span multiple

CPU architectures.
• Tools that require programmers to explicitly manage

threading.
Most complaints about software-development tools

seem to come from programmers writing mainstream soft-
ware for PCs and servers. Development tools for embedded

processors and high-performance computing (HPC) are
more plentiful. That’s logical, because multicore processors
have a stronger beachhead in the embedded and HPC mar-
kets, and the level of integration (cores per chip) is often
much higher. Then, too, many embedded and HPC programs
are “embarrassingly parallel”—the computer-science buzz-
word for applications that have so much parallelism,
exploiting it is easy to the point of embarrassment.

Tools for Specialized Processors
Let’s examine the three categories of software-development
tools in turn. First are the tools for specialized CPU architec-
tures. Typically, these tools are created by the same company
that invented the architecture. The architecture tends to be
the foundation for exotic, often massively parallel proces-
sors designed for rather narrow application domains, such
as video compression, packet processing, or digital signal
processing.

The individual processor cores may be very simple—
eight- or 16-bit cores aren’t unheard of—but a single chip
may have hundreds of them. The inventors of these architec-
tures must create their own development tools, because their
companies are usually startups. Third-party toolmakers
aren’t interested and probably lack the expertise.

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

T H E E D I T O R I A L V I E W

TOOLS FOR MULTICORE

PROCESSORS

by Tom R. Halfhi l l {7/28/08-02}

We keep hearing more complaints that it’s hard to write software for multicore processors

because there aren’t enough development tools. Not enough tools? That’s like complaining

it’s hard to buy Chinese products because there aren’t enough Wal-Marts.

2

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Editorial: Tools for Multicore Processors

Numerous examples we’ve covered in MPR include
Ambric, Connex Technology, Elixent, Eutecus, IBM, Math-
Star, NEC, PicoChip Design, Silicon Hive, Teja Technologies
(since acquired by ARC International), Tilera, and XMOS
Semiconductor. (For MPR article references, see the “For
More Information” box.)

Most of these companies are emerging from startup
mode, but there are established firms, too. One is NEC, with
its Dynamic Reconfigurable Processor. Another is IBM, with
its Cell Broadband Engine. Cell BE is a more general-purpose
processor than others in this group, but its Synergistic
Processor Elements are data engines based on a different
architecture than the Power Architecture control processor.

The advantage of these types of devices is a CPU archi-
tecture designed for a specific application domain, so they
can be very good at what they do. They don’t need to run
word processors and web browsers. The same engineers
who designed the architecture probably also created the
software-development tools or had a great deal of input.
Indeed, the CPU architecture may be designed to fit the
tools, not vice versa. As a result, these processors tend to be
highly tuned performance machines.

Of course, they have disadvantages, as well. The devel-
opment tools usually add proprietary extensions to standard
C or C++ and tie the source code to the CPU architecture.
The processor, development tools, and application code are
tightly bound together, so everything either sinks or swims.
If the startup fails and the architecture dies, the source code
probably isn’t very portable to another architecture. If
developers like the processor but hate the tools, there are no
alternative tools for that processor. If developers like the tools
but hate the processor, there are no alternative processors
compatible with the tools.

Tools for Multiple CPU Architectures
Another approach is to create parallel-processing software-
development tools that work with multiple CPU architectures—
sometimes architectures having almost nothing in common.
To insulate programmers from the metal, there’s either a
run-time hardware-abstraction layer or an interchangeable
back-end code generator on the compiler. Unlike the devel-
opment tools in the first category, tools in this group don’t
necessarily bind developers to a specific CPU architecture or
CPU vendor.

Examples we’ve covered in MPR include Nvidia, Peak-
Stream (since acquired by Google), and RapidMind. In addi-
tion, Fujitsu has shown a remote asynchronous procedure-
call mechanism that fits somewhere between this category
and the next one. Fujitsu’s mechanism combines conven-
tional thread programming with procedure calls that can
leap across the chasm separating different platforms.

Nvidia’s Compute Unified Device Architecture (CUDA)
is a software-development platform for massively parallel
high-performance computing on the company’s powerful
GPUs. It was formally introduced in 2006, and Nvidia

recently extended CUDA to the Intel x86 architecture.
CUDA is free, so it’s an attractive way to get started.

PeakStream and RapidMind focus on software-
development tools alone. Since the Google acquisition,
PeakStream has virtually vanished into the Googleplex, leaving
more room in the market for RapidMind. The latest version of
the RapidMind Multicore Development Platform works with
x86 processors from AMD and Intel; the GPUs from ATI
(AMD) and Nvidia; and IBM’s Cell BE. Note that those CPU
architectures are nearly as disparate as any available.

RapidMind’s hardware-abstraction layer hides low-
level details from programmers, who write code in C++
extended with new constructs and functions. Once written,
the same source code can run on any of the supported CPUs.
New generations of those CPUs—even those with additional
processor cores—can also run the same code, although
modifications will deliver more performance.

Likewise, programmers writing code for the CUDA or
PeakStream platforms use C or C++ with special (albeit dif-
ferent) extensions. CUDA departs from RapidMind by using
a longer tool chain that compiles the code differently for the
various CPUs and GPUs it supports, although the GPU
driver provides some hardware abstraction.

The biggest advantage of the software-development
tools from Nvidia, PeakStream, and RapidMind is multi-
platform flexibility. They support radically different CPU
architectures with a recognizable version of C/C++, and
they don’t require programmers to completely rewrite their
code when switching architectures or microarchitectures. In
addition, these tools don’t tie developers to a specific CPU
vendor—particularly a startup vendor whose future is
uncertain.

On the downside, these tools do tie developers to the
tool vendor. Early adopters of PeakStream’s tools probably
weren’t thrilled when Google swallowed the company. Even if
they still receive tech support, what is their long-term outlook?

CUDA is a good bet to stay around, because Nvidia is a
substantial company. RapidMind is a startup and appears to
be stable. But even if something bad happens to RapidMind,
another company would probably snap up RapidMind’s
computer-science whizzes and their innovative technology.
Also, programmers experienced with RapidMind’s tools are
better prepared to port their source code to a platform like
CUDA—or vice versa.

Tools for Explicit Threading
MPR has written little about explicitly threaded software-
development tools, because it’s the most conventional
approach to the problem and has been around for many years.
It’s not a very flexible approach, and we doubt its viability in
the long run. Unfortunately, it’s also the programming model
that most of today’s programmers are most familiar with.

In the context of this discussion, “explicit threading”
means writing code to create a thread, protect it against
deadlocks, and manage the thread’s life cycle. Programming

3

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Editorial: Tools for Multicore Processors

languages requiring this degree of attention include Java
and conventional C/C++ (e.g., the Posix pthread API).
Implementing threads in this manner is too limited and too
prone to bugs. Beyond a relatively small number of threads,
the task often becomes unmanageable and unpredictable.
(See MPR 4/30/07-02, “The Dread of Threads.”)

Keep in mind that some development tools we’ve
mentioned in the other two categories can spawn dozens,
hundreds, or even thousands of simultaneous threads from
only a few lines of high-level code. And whereas PC proces-
sors are creeping toward eight cores per chip, MPR has writ-
ten about embedded processors with more than 4,000 cores
per chip. Explicitly threaded programming languages can’t
keep up with tomorrow’s (or even today’s) manycore and
massively parallel processors.

Nevertheless, explicit threading has its place. Some pro-
grams are largely serial in nature and either can’t use or don’t
need massive threading. (Word processors and low-level
embedded tasks come to mind.) Other applications have
lots of inherent parallelism and few or no dependencies
among threads to worry about, so spawning new threads is
safe and easy. (A process that services numerous visitors to a
website is a good example.) Traditional software-development
tools can serve those needs well. One example is Intel’s
Threading Building Blocks, a run-time library for C++. It
helps programmers implement multithreading on x86
processors, and it’s a multiplatform solution, supporting the
Windows, Linux, and Mac OS X operating systems.

The big advantage of these tools and languages is their
relative familiarity. Their biggest disadvantage is the difficulty
of exploiting the growing number of cores appearing in
processors. Barring an unexpected breakthrough that has
eluded computer scientists for 50 years, these solutions will
have trouble keeping up with the multicore trend over the
long term. Software that can’t take advantage of more cores
will reach a performance plateau that tracks the slow
progress in clock frequency.

The Quest for Standards
This editorial barely skims the surface of parallel program-
ming, yet it’s clear that software developers have many more
choices than they probably realize. To narrow the field,
developers can decide which element of a project matters
most—the microprocessor or the software-development
tools. Either preference will greatly reduce the available
options for the other element.

More options are coming. Numerous companies, uni-
versities, and consortiums are attacking the problem of paral-
lel programming at various levels. AMD, IBM, Intel,
Microsoft, and Sun Microsystems are linking up with univer-
sity research projects to develop better solutions. Intel and
Microsoft are jointly sponsoring a pair of research centers at
the University of California at Berkeley and the University

of Illinois at Urbana-Champaign, committing $20 million
over the next five years. The Multicore Association, an
industry consortium, has a new working group devoted to
programming practices for multicore processors. The
group’s work is based partly on technology from Critical-
Blue and its Multicore Cascade tools.

I expect most of these projects to settle on language
extensions and run-time libraries that standardize parallel
programming with C++, much as C++ added object-oriented
extensions to procedural C. This solution will be satisfactory
for mainstream applications, but it’s not a revolutionary
breakthrough for top performance in niche applications. As
always, the very best results will require special effort with
specialized tools—and probably specialized CPU architec-
tures, too.

F o r M o r e I n f o r m a t i o n

• Ambric (see MPR 10/10/06-01, “Ambric’s New Parallel
Processor”)

• Connex Technology (see MPR 1/9/06-01, “Massively
Parallel Digital Video”)

• Elixent (see MPR 6/27/05-02, “Elixent Improves D-
Fabrix”)

• Eutecus (see MPR 2/12/07-01, “Faster Than a Blink”)
• Fujitsu (see MPR 8/13/07-01, “Fujitsu Calls Asynchro-

nously”)
• IBM Cell Broadband Engine (see MPR 2/14/05-01,

“Cell Moves Into the Limelight”)
• MathStar (see MPR 7/24/06-02, “MathStar Challenges

FPGAs”)
• NEC DRP (see MPR 11/25/02-04, “New NEC Array

Speeds Data”)
• Nvidia CUDA (see MPR 1/28/08-01, “Parallel Processing

With CUDA”)
• PeakStream (see MPR 10/2/06-01, “Number Crunching

With GPUs”)
• PicoChip Design (see MPR 10/14/03-03, “PicoChip

Makes a Big MAC”)
• RapidMind (see MPR 11/26/07-01, “Parallel Processing

For the x86”)
• Silicon Hive (see MPR 6/20/05-01, “Busy Bees at Silicon

Hive”)
• Teja Technologies (see MPR 4/3/06-02, “Teja’s FPGA

Play”)
• Tilera (see MPR 11/5/07-01, “Tilera’s Cores Commu-

nicate Better”)
• XMOS Semiconductor (see MPR 8/6/07-01, “XMOS

Redefines Silicon”)

