Q\ Reed Electronics Group

MIGROPROLESSDHR

www.MPRonline.com

< THE INSIDER’S GUIDE TO MICROPROCESSOR HARDWARE

MICROPROCESSOR HITS AND MISSES

Panel at Hot Chips Symposium Reviews 20 Years of Successes and Failures

Edited By Tom R. Halfhill {10/20/08-01}

Designing a new microprocessor is risky business, it turns out. Most projects don’t

achieve anywhere near the success anticipated by their designers. Riskier yet is creating

a new microprocessor architecture, which might be an even bigger gamble than sub-

prime loans. The failure rate of new processors and archi-
tectures is alarmingly high—and there are no government
bailouts.

This year marked the 20th anniversary of the Hot
Chips Symposium at Stanford University in Palo Alto,
California, sponsored by the IEEE Technical Committee on
Microprocessors and Microcomputers. To celebrate, the
organizers invited six industry experts to join a discussion
panel: “Ready, Fire, Aim—20 Years of Hits and Misses at
Hot Chips.” They reviewed new microprocessors and
architectures presented at the symposium since 1989 and

attempted to sort out the successes and failures. Panel
members included the following:

Nathan Brookwood, founder and principal analyst of
Insight64, a technology-analysis firm

Dave Ditzel, vice president of Hybrid Parallel Com-
puting at Intel and formerly CEO of Transmeta

John R. Mashey, founder and principal consultant at
Techviser, formerly a microprocessor architect at Silicon
Graphics and MIPS Technologies

David Patterson, professor of computer science at the
University of California, Berkeley, and coauthor (with John

Members of the “Hits and Misses"” discussion panel at the Hot Chips Symposium were (from left): Howard Sachs, Telairity; David Ditzel, intel;
Michael Slater, Webvanta; Nathan Brookwood, Insight64; John R. Mashey, Techvisor; and David Patterson, University of California at Berkeley.
(Note: To reproduce an acceptable photograph of the panel, MPR assembled a composite image from different frames of a video recording.)

© IN-STAT

<7 OCTOBER 20, 2008

< MICROPROCESSOR REPORT

PHOTO COURTESY OF HOT CHIPS SYMPOSIUM

2 Microprocessor Hits and Misses

L. Hennessy) of Computer Architecture: A Quantitative
Approach.

Howard Sachs, president and CEO of Telairity

Michael Slater, CEO of Webvanta, for-
mer vice president of Adobe Systems, and
founder of Microprocessor Report

The session was chaired and moderated
by Nick Tredennick, a technology analyst for
Gilder Publishing and formerly an engineer at
Altera, IBM, and Motorola. (Tredennick was
also a member of the MPR editorial board for
many years.)

To prepare for the panel discussion,
each panelist gave a brief presentation. This
article omits those presentations but
includes the transcript of the lively discus-

Brookwood: We were talking about the [Intel] 432
[microprocessor]. These programs do have human conse-
quences. And one of the side effects of Intel focusing on the
432 is that they took a young engineer, pretty
much out of college, and threw him on a
program to see what they could do to the
[Intel] 286 to keep it going for a couple more
years—

Patterson: That’s not quite right.

Brookwood: Oh?

Patterson: No, what happened was this.
Gordon Moore, of Moore’s law, was and is
pals with Gordon Bell. [Editor’s note: Bell,
now at Microsoft, was vice president of research
and development at DEC for many years.] And
Gordon could see that Intel was eventually

PHOTO COURTESY OF HOT CHIPS SYMPOSIUM

sion that followed. MPR has lightly edited the ~ Microprocessor Report founder going to be a competitor, but they got along.

transcript for clarity and has added com-
ments and article references to help put some
remarks into context.

Three Weeks to Design the x86

Patterson: When you look at the history of computer archi-
tecture, what’s our batting average? It seems like the disasters
are so easy to find. It’s hard to find the successes.

Mashey: Well, consider this. The IBM 360 was designed in
the early *60s. There is still an upward compatible thing being
built. I actually wrote code in 1970 that is still running today—
assembler code—and it does instruction modification!

[laughter]

Tredennick: So who’s done the most damage to com-
puter engineering over the last 20 years? Yes, which one of
you guys, which one of us?

Brookwood: I think Ditzel.

[laughter]

Tredennick: So who’s wasted the most money over the
last 20 years?

Patterson: It’s not me, I'll tell you that.

Slater: It depends on who has the most money to waste.

Sachs: It’s probably between Dave and me, I suspect.
And we're not going to tell, right?

Ditzel: Howard didn’t know about all the other secret
gallium arsenide programs at Sun that never were announced.
One of the things I was going to put on the slides was I
remember vividly a giant all-hands Sun meeting where Eric
Schmidt, now CEO of Google, got up and announced that
Sun would be the first company to ship a gallium arsenide
processor.

Patterson: You guys may not know your computer
history, but Convex successfully shipped a gallium arsenide
computer. They made it work, and it sold, and people
bought it. So, I guess, better engineers were able to make
them work.

[laughter]

Mashey: Whoa, whoa, whoa! Be fair, be fair!

Michael Slater made a rare reap-
pearance at Hot Chips to partici-
pate in the “Hits and Misses" dis-
cussion panel.

Gordon Moore saw—and this was when they
[Intel] were doing the 8080 and 8-bit instruc-
tion sets—that probably the next instruction

............................ set they did was going to last forever. So he

hired a bunch of smart people, many from
Carnegie Mellon, and sent them up to Oregon, and they
were going to do the next great thing. And it was a stealth
project. If you applied for a job, they wouldn’t tell you what
you were working on. But it was going to change the world,
and you should take it.

So after a couple of years, they had this thing that was
going to change the world, but it was going to be late. So
Gordon Moore saw it coming, set it all up, and then the guys
took too long to do the 432. So he had an emergency to
design a 16-bit instruction set. They had three months to
come up with the instruction set, because they had to have a
product to market. And that product is x86.

Tredennick: John? [Editor’s note: audience member
John Wharton, former Intel engineer and MPR analyst.]

Wharton: It was three weeks. It was not three months.

Patterson: Three weeks? It was three something.

Wharton: Eight man-weeks went into the develop-
ment of the x86 spec, and they didn’t implement the full
spec when they actually introduced it.

Patterson: Yeah, but it was a—

Wharton: ...filled in the gap with the 432...

Patterson: ...They had a careful plan...and they had
an emergency, and they needed an instruction set so they
could ship a chip. And that’s the one that’s lasted, and will
last for the rest of our lives.

Brookwood: 1 was talking about the 32-bit [x86]
extensions, which is what [Intel engineer, now Senior VP
Patrick] Gelsinger did. And that’s because all the good peo-
ple at Intel, all the hotshots, were off on the 432. And so they
said, “Here Gelsinger, you go and do this, and see how you
can keep the 286 going.” And of course, you know, that
turned out to be the salvation, and Pat has been able to use
that forever.

© IN-STAT

<7 OCTOBER 20, 2008 <

MICROPROCESSOR REPORT

VLIW: Success or Failure?
Audience question: VLIW and Itanium took a lot of heat.
One of the problems that was mentioned was relying too
much on the compiler and general software
issues that sort of sank it. Yet, at the same
time, in your last presentation, you said that
multicore is the greatest success of the last
20 years. So can you justify, or do you think,
that software issues have in fact been solved,
and software programming issues have been
solved, for multicore? Or is there a danger
that it might end up like VLIW because it
sinks in software?

Sachs: You know, I'm taking issue with
this. Just because Nate jumped all over
VLIW doesn’t mean it’s right. [Editor’s note:
Earlier in the session, Nathan Brookwood’s

Microprocessor Hits and Misses 3

I think multicore has a pretty safe niche. But the goal is to sell
it in Mac Airs, that you and I are going to want to buy a Mac
Air with 32 processors in it, in a few years. And we’re going to
tell everybody it’s a good idea—don’t get rid of
your 16-processor Mac Air and buy the 32-
processor Mac Air. If that doesn’t happen, if
the software can’t effectively take advantage of
that, sales of computers are going to slow. And,
boy, given the history of multiprocessors, it’s
hard to imagine that any of us in this room, in
whatever number of years, is going to say,
“Yeah, get rid of your 16-processor laptop and
buy the 32-processor one [because] it’s going
to run a lot of software faster.”

Mashey: I thought you university guys
were going to take care of it for us.

Patterson: Tell you what, we’re going to

PHOTO COURTESY OF HOT CHIPS SYMPOSIUM

solo presentation criticized VLIW.] Now, I

rest of you guys, but I think I can say atthe Hot Chips Symposium

“you”—for many vyears we've worked
together on VLIW. And I really think it’s a nice technology.
Now what Itanium did, I can’t speak for. But I think VLIW
is a nice technology.

Patterson: Well, you shouldn’t call it “VLIW” [very
long instruction words]. You should call it “LTW” [long
instruction words]. Right? You guys like three instructions,
right? I mean, that’s kind of the tech...It’s been very suc-
cessful in the DSP market. And I think it’s like three, right?
Three or four?

Ditzel: Three or more. It depends on what you're
doing. If youre doing graphics and video processing and
other things, you can do it wider and use it, and it’s one of the
most power-efficient architectures out there. It’s why DSPs
are generally built with that form. I think you shouldn’t brand
all implementations as bad just because there’s one imple-
mentation you don’t like.

Mashey: Oh, there were more than that. Right? [laughter]
No, no, I think...who were the guys?

Brookwood: Multiflow?

Mashey: Multiflow. OK. The really wide—the LIWs
that deserve to be called “Vs,” you know, compiler life was
hard. Observation: one difference in multicore is a long his-
tory of multiprocessor stuff, and those at least get the bene-
fit of throughput stuff, even if they don’t get the speedup for
the individual program. Right? And that’s a huge benefit for
lots and lots of environments. It doesn’t make Word run any
faster. [See MPR 2/14/94-05, “VLIW: The Wave of the
Future?” and MPR 12/5/94-06, “Architects Debate VLIW,
Single-Chip MP”]

Will Multicore Processors Sell PCs?

Patterson: Several of us at universities—including Stanford,
Berkeley, and Illinois—many people are worried about the
future of multicore. Now, in servers, or in cloud computing,

i , Nick Tredennick moderated the . i
think Dave and I—I don’t know about the “Hits and Misses’ discussion panel ~and we're going to give it our best shot. But

try. Stanford, Berkeley, Illinois have big efforts,

what’s strange for academic research projects
is we have the sense that the industry is
depending on these three academic projects to deliver, or else
bad things are going to happen. And it’s a very strange posi-
tion to be in.

Slater: But there’s something behind what you said. Will
people buy new computers because they want the faster one?
And I think that’s actually ceased to be true for a number of
years now. People buy new computers because, you know,
it’s a laptop and the keyboard wears out, or the screen is bad,
or the power supply goes bad, or a new operating system
comes out and it’s easier to replace the computer. So, in
some sense, I think progress in processors is nearly irrele-
vant to the rate at which computers are sold.

Patterson: So if things grind to a halt, it doesn’t matter.

Slater: Well, it matters, but I don’t think it would be
crippling. I don’t think it would have a huge effect.

Sachs: I think I would be happy if you could get Vista
off my laptop.

[laughter]

Slater: Buy a Mac.

Sachs: That is next.

Intel's 8086 Was a Rush Project
Wharton: This isn’t why I stood up here, but to clarify on David
Patterson’s comments: When the 432 underwent a one-year
slip, that was going to be a 32-bit architecture with a 16-bit
underlying implementation. When they learned there would be
a one-year slip in the schedule, Intel had a vice-presidential
meeting, and they came up with three design criteria for
something that would fill in that gap. And the three criteria
were that it have a 16-bit ALU and a 20-bit address space.
Secondly—

Patterson: That came from the management?

Wharton: Yeah, this was like the top 12 people in the
company came together with this list of design criteria.

© IN-STAT

<7 OCTOBER 20, 2008 <~

MICROPROCESSOR REPORT

4 Microprocessor Hits and Misses

Something had to be on distributor shelves—a thousand
units, 52 weeks from today. And I think it actually slipped to
54 weeks, but the 8086 was actually on the shelves. And the
third thing is, we have to make an argument that it’s upward
compatible from the 8080. It didn’t have to be upward com-
patible; we just had to be able to make the argument that it
was upward compatible from the 8080. Which they did, at the
source-code level, using a translate-86 program that took the
same basic register set and moved it into the 8086.

Sachs: Wasn’t that an OO machine? Object-oriented
machine?

Wharton: The 432 was an object-oriented machine. It
was wondrous. Thirty-three bits in every instruction word—
Patterson [to Sachs]: He’s talking about the 8086.

Sachs: Oh, I thought he said 432?

Patterson: No, he was saying because the 432 was late,
they did the x86.

Sachs: Oh, before it slipped. Ah.

Wharton: So, yes, the x86 evolved out of—

Patterson: Three weeks on the instruction set on a 52-
week schedule to silicon isn’t a lot.

Wharton: Yes, the edict was a thousand units on distrib-
utor shelves 52 weeks from today. Working backward, the
only way to do that, was we had to have a spec on paper two
weeks from now.

Ditzel: To draw the obvious conclusion, we’re giving
designers too much time to design! [laughter] If this is a
market success within three weeks, then stop these year study
projects.

Slater: It’s also worth noting that the reason it’s a market
success is that IBM chose it, right? The success of the x86 had
absolutely nothing to do with any of the design decisions
that were made.

Patterson: No, there was one important design decision.
Intel had both the—well, two things, compared to the
[Motorola] 68000. They had the 8086 and the 8088. They
had an 8-bit [I/O] version and a 16-bit [I/O] version of the
same basic package. And that was a big deal for IBM. Also,
Intel was there with the chip. And I think Motorola was later.
So those two things, right?

Tredennick: And Intel had a full set of peripheral chips
already available. [Editor’s note: Tredennick designed the 68000
microarchitecture and control store.]

Patterson: Yeah, and the other thing that the people
involved in the 432 don’t get credit for is the IEEE floating-
point standard, of which the 8087 was the first implementa-
tion. All that work got started with the 432. So they asked all
kinds of big questions. What’s the proper floating-point
arithmetic for the future? They had lots of big questions.
And so the idea for the IEEE floating-point standard was
funded and originated in the 432, and the first implementa-
tion was this coprocessor floating-point chip, the 8087, and
the standard was closely related to that.

Wharton: Oh, by the way, I hadn’t heard, Dave, your
comment that Gordon Moore thought there would be one

more architecture and that we better get it right. It turns out
he was right in that regard.

Patterson: Yep. And you look back, and he was right
about a whole lot of things.

Failure Is an Option

Wharton: The reason I stood up here was to ask the ques-
tion: Frank Lloyd Wright supposedly said that surgeons may
bury their mistakes, but architects can only plant ivy.
[laughter] Tm wondering what computer architects do
when they realize they may have had the wrong insight in an
earlier generation.

Brookwood: Switch companies? [laughter] I think the
market takes care of that. Or if it’s one large company, they
can ship it anyway and sell lots of them.

Patterson: I think what’s interesting for me, as I went
through all the Hot Chips programs—I don’t think I'm that
old—I forgot there’s all these numbers I hadn’t heard of in
so long. I just forgot—the 88000—oh, yeah, Motorola made
a RISC processor. 1 completely forgot that. The [AMD]
29000—I'm not even sure what that is anymore, but I think
it was a RISC processor, too. So all these other ones, I just
forgot. If you don’t say anything, they just disappear and
people stop talking about them.

Mashey: So I get to put a little plug in. Come to the
Computer History Museum! You get to see lots of failures.
[Editor’s note: Mashey is on the museun’s board of trustees.]
But the other one, actually, if you've never been there, is the
Science Museum in London, out in South Kensington,
which is a wonderful museum. Think of the British Empire at
its height. It’s got all the old steam engines. And you know
what? They tried everything! And we’ve just repeated that.

Teaching Parallelism to Programmers

Audience member: Multicore has been a real changer for
our industry. ’'m wondering if it’s not going to affect some-
thing else as well, that’s a little older, namely the tree-chopping
and pulping industry. So this is a question for you, Dave
[Patterson]. What are you and Hennessy going to do about
your textbook [Computer Architecture: A Quantitative
Approach] with regard to multicore?

Patterson: What a great question! So the president of
this university left it to me to do the next edition of the under-
graduate textbook, because he claimed he had things to do.
[laughter]

Mashey: What a wimp!

Patterson: So this edition is coming out in November.
Every chapter has a section on parallelism. There’s cache
coherency. There’s bus consistency. The problems of float-
ing-point arithmetic in parallelism, you know. If you calcu-
late with 32 processors, and you calculate with 16, you might
not get the same answer. There’s a new chapter on paral-
lelism. So there’s a brand new chapter and a new section in
every chapter. Yeah, I think the challenge for us, as educators
is—unquestionably, the future is parallel. A hundred percent

© IN-STAT

<7 OCTOBER 20, 2008 <

MICROPROCESSOR REPORT

of architects think the future is going to be parallel comput-
ers. Yet at the same time, nobody knows what the program-
ming model is. We know we have to train the people going
to college something, but we don’t know what it is. And you
know, that’s a tough challenge. At least on the hardware side,
there’s stuff we can talk about that’s been done before, and
there are some ideas that you should be aware of that help
you understand where to start.

Mashey: Well, at least there’s hope, right. Compared
with the old days, when a multiprocessor was an expensive
device, at least multicore things are cheap enough that every
student can have one.

Patterson: I think I've got six reasons why we’re going to
succeed this time. The first one is there is no killer micro,
right? No one is building a faster uniprocessor. In the past,
you just did the lazy-boy programming. You just sit there and
“I'm not going to learn any new programming. I'll just wait
for Intel to make my processor faster.” So kind of ironically,
it’s Intel’s fault there are no multicores out there, because they
can’t build faster uniprocessors. It’s all going to be in one chip.
That will allow us to do things that maybe we’ve never done
before. There’s the open-source software industry, which is a
really major force today, and that’s a real meritocracy.

Audience member: Can they innovate?

Patterson: Can they? I think open-source software—

Audience member: So far, they’ve only been com-
moditizing.

Patterson: I think open-source software—these are
volunteers. They like cool things. I think they want to give
cool things to volunteers to work on. So I think there are
some reasons for optimism. Before, only startup companies
were working on it. Now the whole industry is working on it.
Everybody’s working on it now, so we’ve got a large fraction
of people on it. So there’s some reasons to hope we’ll be suc-
cessful this time.

Another audience member: A survivor worth men-
tioning is the [Zilog] Z80000. It had MMX instruction set. It
is a survivor because it showed up, along with its floating-
point bug in Pentium. If [former Pentium engineer] Don
Alpert is here, he can reflect on that. Other smaller ones are
FFT, ever since 200 years ago, and Huffman codes from 1950.
Still, those have been resisting [unintelligible] for a long time.

Are There Opportunities for Startups?

Another audience member: I have two questions: the first
one is very small and related to the second one. Given the
complexity of today’s chips, and all the failures of companies
and startups that we have seen in the last 20 years, do you
think our computer architecture market can accept any new
successful startups? Well, I guess that’s the first question. The
second question is, How?

Ditzel: I think the big challenge isn’t the market
acceptance of a new startup. I think the problem is: Can a
new startup actually get the funds to get a product to mar-
ket? It is becoming so expensive now. I'm referring to the

Microprocessor Hits and Misses 5

design of general-purpose processors to get something done.
For example, the costs of taping out one of the first SPARC
chips at Sun was maybe $20,000 or something? Today, it’s on
the order of $2 million to $4 million per tapeout, if you look
at one of the most advanced [fabrication] technologies. If I
look at one of the chips that was here in 1992 or something—
the SuperSPARC chip—I think we did about 30 all-layer
tapeouts. Many metal layers, trying to get things right.

Brookwood: Thirty? Thirty?

Ditzel: It was a very large number. It went for, I think, on
the order of 24 months to get it right...This is a chip that
finally made it to 32MHz, maybe a little bit more over time.
But a lot of practices and things in Silicon Valley—where there
are lots and lots of startups who can make chips and tape
them out and do it with reasonable funding—I think they are
going to find that the costs are just becoming prohibitive. So I
think we’re going to see a change in the type of startup com-
panies and other things, just because it’s so prohibitively
expensive to figure out how to make a really significant
advance. It’s not easy. There’s not a lot of low-hanging fruit.

The engineers have done a great job. Look at the Pen-
tium Pro evolving into the [Intel] Nehalem processor, right?
There’s been a lot of years in between where people have very
carefully made iterations there. And if you want to do some-
thing that gets dramatically better than that—wow! I wish
you every success. But the history of 20 years of Hot Chips is
that revolutionary ideas are rarely immediately successful.

And so I just think it’s a very tough environment now.
It’s very tough for new startups to get funding. If you look at
a recent example, like Montalvo [Systems], the rumors were
that they spent on the order of $100 million to get the chip
taped out. But it would have taken another $100 million to
get to market. [See MPR 5/27/08-02, “Editorial: A Tale of Two
Companies.” |

From Transmeta’s own experience, one of the biggest
challenges, even if you get a product to market, is brand.
And the question is, how many hundred million dollars do
you have to spend to get things accepted? Because you could
build a great product and people don’t accept it. Transmeta
had a bunch of notebooks that shipped, for example, in
China. Tremendous sales in the first couple of weeks. And
then they started to get returns three weeks later, because
people hadn’t heard what a Transmeta chip was.

And sometimes also, as a startup company, you don’t
have a lot of other products to back you up when one slips.
It’s very tough to get something so complicated out the door.
One of Transmeta’s biggest issues, most people don’t know,
was fab problems, which forced Transmeta to shut down
shipments to customers for a year. That window that Nathan
[Brookwood] picked on a little bit—that was fun, being
stealthy—Dbut really the time from announcement to when a
competitor responds is very important there. And so in
Transmeta’s case, the tapeout was good, it was a good chip, it
was a chip that worked, [but] it was just simply that the fab
had trouble being able to manufacture it. The company never

© IN-STAT

<7 OCTOBER 20, 2008 <~

MICROPROCESSOR REPORT

6 Microprocessor Hits and Misses

really recovered from shutting all your customers down and
then asking them to trust you, the next time, to use the
product. So there are a lot of issues that affect companies, and
it’s a very tough business to get into for a new startup com-
pany. [See MPR 12/26/07-01, “Transmeta’s Second Life.”’]

Brookwood: And if the money and the brand aren’t
enough problems, there are all the intellectual-property
hurdles now. For established players, they can do cross-
license agreements and kind of finesse the patents. But if
youre the new guy on the block and you don’t have any
intellectual property to trade, then it’s very hard to enter.

Tredennick: So you guys don’t think programmable
logic is the answer to this?

Patterson: Let me counterpoint this. You guys are the
model where you go compete with Intel by selling chips. A
whole lot of startups are in the model that the goal is to get
acquired. The whole CAD industry is set up that way. These
days, if you had a really great idea in multicore, some kind
of software/hardware thing, and you could use FPGAs to
emulate it, and your goal is to try to get acquired, and you
have a genuinely good idea—

Ditzel: If you solve the multicore problem, you will be
acquired. I guarantee it!

Patterson: Your goal has to be, we’re not going to tape
out chips. Here is our idea, we’ve got this incredible thing—

Tredennick: You need the proof of concept.

Patterson: Yeah, you need the proof of concept. It takes
a lot less money than making the chip does. I think there’s an
opportunity for great ideas now. The industry needs great
ideas. I think that somebody who claimed to have some-
thing, a significant advance, would be a very successful
startup, you know, in an acquisition, which solves all the
patent problems.

Sources of New Ideas: Academia vs. Industry
Audience question: So I have an interesting question, both
looking back and looking forward. From my perspective,
computer architecture is very interesting, and a lot of ideas
that were novel came both from academia and industry. You
know, the classic one, I think, would be the Tomasulo algo-
rithm, which was developed in industry, not in academia.
[Editor’s note: In 1967, Robert Tomasulo of IBM developed an
algorithm for out-of-order instruction execution.] On the other
hand, you have things like simultaneous multithreading
which was the University of Washington and the folks at
DEC. So I'm curious, as you look back at all the great ideas,
what you thought were good ideas, that proved to be great
ideas, and going forward, what do you think the contribution
of academia is and the contribution of industry? And let’s try
not to have a fight between all the five guys on the left and the
guy on the right. [laughter]|

Tredennick: Why not?

Patterson: I can handle myself pretty well.

Unknown: He’s pretty tough. We’re worried about the
five guys.

Mashey: Let me make a comment here, because this is
something I actually worry about. Dave [Patterson] and I
were talking about this a little bit before. You know, there
have been periods where in universities you could actually
do clear leading-edge stuff that was pretty cool and pretty
competitive. And then there have been other periods where
it was harder to do that. And I would ask Dave, “Do things
go back and forth? What kind of period are we in? Where are
the classes of things that you feel you can do very cool stuff
in the universities?” Because when I talk to university people,
I say, “Do research to try stuff out. Don’t do the stuff that
worries about chip yields and stuff like that. That’s a waste of
time for you. Explore ideas. See what works. See what doesn’t.
But make sure, at least, it’s not something that leaves all the
software as an exercise.”

Patterson: What’s cool about computer architecture,
at least if you're my age, is you could meet all the people who
invented everything. I got to meet [Presper] Eckert and [John]
Mauchly and Maurice Wilkes and all those guys. IBM was just
this overwhelming thing in the early years of computers:
caches, the Tomasulo algorithm. People who weren’t around
then don’t quite realize how big IBM was. It was like Microsoft
and Intel and Google all in one company, right? They just
ran everything. And they had this huge money-maker in the
mainframe, and so they were generous to universities, and
they had huge research teams. They did a lot in the early years.

Having said that, I think there’s a study that the National
Academy of Sciences did about technological innovations,
and they looked at where these things came from. You see this
50/50 mix between industry and academia. Now the thing to
keep in mind is what they said is timed to a billion-dollar
industry. They have 19 examples of billion-dollar industries,
and it’s about 10 years. So here are these ideas, some of
them, usually, it was done both in industry and in academia,
one before the other maybe, and 10 years later there’s a billion-
dollar industry. But I think that’s our history. It’s a little worri-
some today, because a lot of the kind of researchy places in
industry have gone away, you know, so I don’t know what it’s
going to look like in the future.

Mashey: Once upon a time there was Bell Labs and
Xerox PARC and stuff like that, and that’s not the same any-
more. Which to me says, particularly for those early stages
of research, we've really got to count on the universities,
more than we perhaps used to.

FPGAs Are Great Tools for Startups

Patterson: In answering Mashey’s question—now I remember
what it was—I'm pretty excited about FPGAs, because they’re
growing with Moore’s law. And as prototyping technology,
they’re just about perfect. It’s kind of like hardware and it’s
almost as easy to change as software. So in terms of building
a prototype, it’s a pretty exciting time. Now, you know, you're
not going to get gigahertz with FPGAs ever, but can you
faithfully build something that works and runs a lot of soft-
ware, and you could accurately estimate timing and have a

© IN-STAT

<7 OCTOBER 20, 2008 <

MICROPROCESSOR REPORT

very credible prototype. I think FPGAs are very exciting.
Building chips has never been harder.

Brookwood: Speaking of FPGAs, when Sun announced
that they were going to let people download the RTL of their
SPARC processors, everybody said, “Oh, yeah, and how are
you going to build it? Where’s your foundry?” But in fact,
they’ve now got FPGAs big enough so you can build and run
a single core on an FPGA. And so these are really fantastic
vehicles for students who are learning. It’s almost like writ-
ing a compiler used to be—when I was doing it, you only
got two runs a day through the punchcard machine—but
basically, you don’t have to wait for the fab to turn around a
wafer. So I think FPGAs are very promising here. [See MPR
5/3/04-01, “Microprocessor Sunset,” and MPR 5/10/04-01,
“Reconfigurable Illogic.”]

The Architecture Born of Paranoia
Tredennick: We'll just take the questions from people who
are at the microphones and then we’ll quit.

Audience member: One comment. The other wonderful
thing about being a computer architect now, in your shoes, is
that in 20 years, you're going to be collecting Social Security.

Sachs: I already am.

Patterson: Assuming it still works.

Sachs: I've been collecting it for 20 years.

Patterson: Yeah, none of us will start collecting Social
Security for 20 years, except for maybe Ditzel. [laughter]

Ditzel: Alright, questions.

Another audience member: First of all, 'm a nitpicker,
so I have to take that nonpossessive apostrophe thing a little
bit further. In England, the spelling of Maurice is pronounced
“Morris.”

Tredennick: We’re not in England. [laughter]

Audience member: And these are the same folks that
take “Burlingame” and pronounce it “Blingham.” But I
want to take the two-week design of an architecture that
changed the world and say that we had another architecture
that was amazing. It took seven years to get it finished. It
was a cooperation among a whole bunch of companies that
were competitors. It was an architecture that had never
been tried before. It was only a little bit of the problem. It
was a floating-point architecture. And [IEEE] 754 is the
only arithmetic you can find on a computer these days, and
has been for a long time, since before it was a standard. It
took seven years to get there. And it fixed a bunch of prob-
lems. It used to be that when you got a new computer, you
had to approach it—if you were doing anything numerical
with floating point—you had to approach it with an atti-
tude of paranoia. And the guy who was the guru of that
project, that standards project, wrote a program called
“Paranoia,” which would tell you what was wrong with the
arithmetic on the machine that you ran it on. It also said,
“If you get this error message, contact [Richard] Karpinski
immediately.” [Editor’s note: “Paranoia: A Floating-Point
Benchmark,” published in Byte Magazine, February 1985.]

Microprocessor Hits and Misses 7

Patterson: That was a great success that was just before
Hot Chips.

Advice for Young CPU Architects

Audience member Christos Kozyrakis: [Editor’s note:
Kozyrakis is an assistant professor of electrical engineering and
computer science at Stanford University.] I have a quick com-
ment and a question. The comment has to do with this busi-
ness class I took eight years ago at Berkeley. I don’t remember
the professor’s name, but the whole point was that failure of
projects is a natural thing, and you just learn how to deal
with it. More projects fail than succeed. And it’s OK, as long
as you save your career. And talking about this, it seems that
even though you guys got involved with one or two failures
over time, you've done great for yourselves. If nothing else,
you’ve got 200 people listening to you at 10 p.m. and trying
to correct your spelling or something. [laughter]

So my question has to do with those of us who are
unfortunate enough to be young architects. Some of us will
be here for another 30 years or something, unless we marry
rich. So let’s switch to a positive spin. Instead of saying
“Merced was a bad idea,” yes, OK, sure, let’s talk about
what’s a positive thing that some of us can use over the next
30 years. One message seems to be, “Pay attention to soft-
ware.” That’s good. Another message that came out was, “Be
open, someone else will discover your mistakes.” So why
don’t we just go around, and each one of you mentions one
positive thing the youngsters should get from this discus-
sion as they move forward for the next three decades or
something.

Tredennick: I'll start it off. I like the FPGAs. I think that’s
a great way to prototype systems. And, in fact, it’s a good idea
for startups, because, for example, Altera has a thing called
HardCopy. You can get a privately labeled product. You can
do, I think, the NRE for HardCopy FPGAs for like $200,000.
And you can get the development kit for almost nothing.
[See MPR 12/17/07-02, “Altera Aims For ASICs.”]

Patterson: I just heard of something called eASIC,
which is kind of [unintelligible], which is a little bit lower
performance, but it’s like $5,000 or $10,000 for the NRE.

Tredennick: That’s a fabric, yeah. So anyway, that’s mine.

Sachs: Mine is: Learn how to work in small teams, as
compared with an individual contributor. Too often, you'll
come up with a really good idea, youre not able to commu-
nicate with other people, or the worst case is you get pretty
emotional about things and say things you're really sorry
about, and your good idea goes down the drain. So learn
how to deal with people.

Ditzel: I guess I'd say stick to it. If somebody tells you
something is impossible, don’t give up. A lot of good ideas
take a while to develop. Over many projects, 10 years is not
unusual—from you spending a couple of years to work on
that idea, to taking a year or two to sell it, to get funding to
build a team, to spend three or four years to build some-
thing, to help get it into the marketplace and out. So pick

© IN-STAT

<7 OCTOBER 20, 2008 <~

MICROPROCESSOR REPORT

8 Microprocessor Hits and Misses

your projects carefully, right? Because youre only going to
get three or four or five 10-year projects in your career. But
if you're onto the right thing, hang on to it, because you'll
know it better than anybody. If you're really onto the right
thing, you can push it, and quite often it will succeed. It’s the
ones that people hold on to the longest that actually make it
through.

Slater: I'd say stay focused on what delivers real big
jumps in actual value to real customers. I think lots of projects
get pursued for ideas other than that, and they ultimately end
up failing, because while they may gratify the architect and
have some clever technical merit, they aren’t really a mean-
ingful increase in value delivered to customers.

Brookwood: T'll borrow from Shakespeare: “Unto
thine own self be true” When you’re looking at something
and you’re working on something, don’t necessarily believe
all the spin that the marketing guys may be applying to your
project or that youre applying to the project. Look at it
scrupulously and honestly to assess whether or not it’s liv-
ing up to what you thought it was going to be. And if it’s
not, and you don’t see how you can make it get to that state,
then you should be pulling the plug on it, rather than some-
body else.

Mashey: I think there’s a particular area over the next
couple years. We've already seen a bunch of it here. That’s
really low power. I currently happen to be fond of and
involved in wireless-sensor network things that have to go five
to ten years on two AA batteries. I believe there’s a lot of room
because of energy problems the world is about to get into,
where processors and electronics can be used to substitute for
energy. The nice thing about low power is that it’s an extra
dimension beyond price, performance, and binary compati-
bility, where there’s actually some interesting stuff that people
can do. I think there’s a lot of turf out there that I think we
need some good ideas in, because we have this little thing
called peak oil coming, and then there’s peak gas, and then
there’s other ugly stuff.

Patterson: I guess I would say find something you're
passionate about. No matter what you do, it’s going to be
hard work. Like the example of the IEEE floating-point stan-
dard, which sounds like the dullest topic you could imagine.
Velvel [William] Kahan, who was the godfather of that effort,
would keep audiences rapt, because he was so passionate
about the importance of accurate floating-point calculation.
I think that kind of passion is particularly useful even in aca-
demic research projects to get people excited to keep work-
ing on them. And particularly at companies, because when
people are trying to decide to join a startup or not—besides
the supposedly getting-rich part, supposedly—it’s do you
believe the vision that you have? So find something that
you're really passionate about that you really believe in,
because you need that kind of enthusiasm to be contagious
within whatever group you’re going to lead.

Audience member: And besides that, it will be fun.

Patterson: Yeah!

Are We Repeating the Same Mistakes?

Audience member: I would add one more thing. If you don’t
eat your own lunch, somebody else will. So a company that’s
afraid to start a new project that’s going to interfere with their
old one, they’re just going to get their lunch eaten. But that’s
not the question I had. In the beginning was the mainframe.
And the mainframe did some pretty amazing things and
made some really stupid mistakes, and it begat the mini-
computer, which did some amazing things and made the
same stupid mistakes, and eventually that begat the micro-
processor, which did some really cool things and did the
same stupid mistakes over again. So we’re sort of the
stepchild of mainframes, in many ways. My question is, if
we’ve been following in their shoes, are we now grown up
and we’re making our own mistakes? Mistakes that the
mainframes never had and never will? Do we have more
mistakes to make in the same shoes that mainframes made?
Or are we really on our own now, all grown up?

Mashey: Sometimes I said this thing where every mis-
take in computer architecture gets made at least three times
with that exact set, except I had to change it to say four times
because of SoCs. Except—

Patterson: Because of what? SoCs are?

Mashey: Well, because it was a new generation of stuff.
What I was going to say is, I don’t think it’s actually true, in the
sense that if you look at it people-wise, there was a pretty big
break between mainframe designers and minicomputer
designers and microprocessor designers. There were people
that overlapped, but there were a lot of design communities
that were sort of independent. Whereas an awful lot of peo-
ple doing SoCs these days have done microprocessors
before, or put microprocessor-based systems together. I used
to see the same battles on SoC internal interconnects that
completely replayed all the same battles we had with multiple
microprocessors. So I think we’re better off, OK? Of course, we
still live with all the mistakes we made.

Sachs: Well, I worked on, in 1975, an IBM plug-compatible
[System/370 Model] 158, so I have done those.

Mashey: But you're unique, Howard.

Sachs: I know, I know. And you know, it feels the same.
It really is no different. Just, you know, different people, dif-
ferent stuff, different problems, but it really feels the same.

Patterson: I think, in this 21st century, with this multi-
core challenge facing us, we've got the chance to fix things. A
lot of what today is mistakes that have happened, we’re stuck
with, you know. Nobody is willing to change all the software
in the world to fix this terrible thing. Like security, right? The
people that invented email, what was our spam technique?
We would yell at anybody that sent spam. That was our tech-
nological solution to spam on email. [Laughter]

So there’s a bunch of mistakes we clearly made in the past
that we can’t figure out how to change. Because of multicore,
this challenge in the whole industry has to change. Here’s our
chance to fix everything. You've got to solve the multicore
problem, which is a huge challenge. But you can fix all kinds

© IN-STAT

<7 OCTOBER 20, 2008 <

MICROPROCESSOR REPORT

of things that we’re embarrassed about computers today, and
make a much more attractive foundation for the 21st century
than we have so far. We would have thought, well, it’s too
late—like your story about the archaeologist—we can never
change that stuff. It’s possible we could change it. There is
such a compelling need that we have the opportunity.

Ditzel: I question the magnitude of the change a little bit.
When I think back to mainframes, there’d be a 16-processor
mainframe system. The only difference between that and
today’s multicore is that it’s on one die. But the years we've
had since the first shared-memory multiprocessor, which was
a Burroughs machine about 1962 or so, is there’s been really
embarrassingly poor progress in the programming model
for that. That really is not changed by multicore. So while
multicore has many benefits still, how do we use hundreds of
cores effectively is the big issue. That’s the challenge. There are
other good ways of using multicores today that are the same
ways we’ve used them for the last many years. I think the
challenge is, are we going to find new ways to use multicore,
which are really a lot better. And I don’t know if we see the
exact answer to using hundreds of cores yet, and I think that
will be the big change. I guess I agree with Dave Patterson.
That’s what we’ve got to look for.

Don't Forget the Applications

Patterson: I'd say one thing that strikes me, as I look back
over all these years—and Illinois and Berkeley and Stanford
all do the same thing—is that somehow this field got created
independent of applications. We could do computer design
without knowing how in the world they were going to be
used. And that was OK, that was fine. How do I figure out if
it’s good? You run Dhrystone, and then you’re all done and
you don’t have to talk about it. What a weird thing that we all
thought we didn’t have to know any applications. So all three
of these new research projects are trying to work closely with
applications developers.

I think it was Stan Mazor on the [Intel] 8080, I think he
said, “Well, we tried to solve some problem, and hopefully by
solving some real problem, it’ll solve others.” And that must
have been one of our weaknesses in the multiple parallel-
processing effort. There would be all these architects with this
preconceived idea of the right thing that was going to solve the
problem, and they never got around to apps. So maybe being
more tightly tied to apps will give us a better chance this time
around. To me it’s startling that we don’t really know anything
about the apps that we’re building the computers for.

Is the x86 Forever?
Tredennick: Last question.

Another audience member: We have to end on failure, I
guess. It occurs to me, while watching all the slides, that Wow!,
we had this wonderful failure from Intel called the 432, and
that led to the great success of the 8086, also from Intel. And
then we had another great failure from Intel, the Itanium,
which led to the x86-64 opportunity from AMD. So first of all,

Microprocessor Hits and Misses 9

For More Information

For more information about the Hot Chips Sympo-
sium, visit:

www. hotchips.org/hc20/main_page.htm

To purchase DVDs recorded at Hot Chips 20, visit:

www. hotchips.org/hc20/store.htm

For additional information on the development of the
Intel x86 architecture, the 8087 floating-point coprocessor,
and the IEEE 754 floating-point specification, see:

“The Intel 8086 Microprocessor: A 16-bit Evolution
for the 8080," by Stephen P. Morse, William B. Pohlman,
and Bruce W. Ravenel, [EEE Computer Magazine, pages
18-27, June 1978, Volume 11, No. 6.

“The Intel 8087 Numeric Data Processor,” by John F.
Palmer, Proceedings of the National Computer Conference,
1980, pages 887-893.

I guess we've got to thank our colleagues at Intel for these
wonderful failures that have promoted great, successful
architects. And so, how do we get them to do it again?
[Laughter] Is it possible, in seriousness—do you think there
will be another general-purpose architecture? Or whatever it
is 100 years from now, it will still be called x86?

Patterson: There is a group that looks only at the com-
puter in front of them. That’s the only computer in the world,
right? But there’s a whole lot of computers in the world, a lot
of computers that aren’t on your laptop. Those are pretty
unbound by binary compatibility. I think there’s plenty of
opportunity for innovative designs. I think the question is
going to be, in terms of binary compatibility, whether we can
get the power efficiency that we desperately need to fit every-
thing on the multicore, and still be binary compatible.
Right? Or will that have to go by the wayside? I don’t know the
answer to it, but if that gets to be in the way, then maybe things
will change. But I think there will be all kinds of system-on-a-
chip things, like Mashey was talking about, where people have
special-purpose cores, ARM processors, all kinds of things are
out there. So that community, I think it’s the more exciting
community. I don’t know how many people have iPhones.
I’'m very excited about my iPhone. It doesn’t have an x86 in it,
and I don’t think it ever will.

Brookwood: 1 also think we’re finally getting to the
point where some of the emulation techniques that people
have talked about for years are finally becoming workable. I
mean, look at your Macintosh today, where they did the tran-
sition from PowerPC to x86. It went incredibly smoothly, far
more smoothly than I had anticipated. Far more smoothly
than when they went from 68K to PowerPC. And a lot of that
had to with the Rosetta technology, which they get from
Transitive, which is also being used in some IBM Power6
[systems] to run x86 and so forth. As that technology
becomes not only more mature, but [also] better accepted

© IN-STAT

<7 OCTOBER 20, 2008 <~

MICROPROCESSOR REPORT

10 Microprocessor Hits and Misses

by ISVs, then I think you do have the ability to innovate in the
microarchitectural space, and even in the architectural space,
and be able to introduce a product without having to worry
too much about the chicken-or-egg issue with software. [See
MPR 1/30/06-08, “This Technology Is Virtually Here Now,” and
MPR 8/8/05-01, “Transitive’s Tech Frees ISA Dependence.”]

Mashey: I'm actually an adviser at Transitive. They do
some pretty interesting stuff. In general, the resurgence of
virtual-machine technologies allows for some interesting
things, I think. For innovation in the general-purpose market,
I think that’s one of the keys.

Patterson: Take another thing that was on one of our
slides about the lack of innovation. I snuck out today and
went to NVision—Nvidia’s answer to MacWorld [Expo], I
guess. That is a very exciting community. Their story is,
“Moore’s law is for slowpokes. We're going faster than that.”

And they’re tied to apps. There’s not this big disconnect
between apps and them. And they have visual computing.
It’s hard to come away depressed about the future of com-
puter architecture when you look what’s going on with
GPUs. Play forward 20 years from now—I don’t really know
which computer will be dominating the future. People in
the future might use GPUs like we use CPUs today, right?
Obviously, it’s visual and media computing that’s at the center
of everything, because that’s what exciting, and there’s also
these things that run operating systems. It didn’t come up in
this panel, but the GPU thing is a pretty interesting force
that’s certainly a wild card and may play an increasingly
important role. [See MPR 1/28/08-01, “Parallel Processing
With CUDA,” and MPR 9/29/08-01, “Intel’s Larrabee Rede-
fines GPUs.”]
Tredennick: Thanks, guys! [Applause] <~

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

© IN-STAT

<7 OCTOBER 20, 2008 <

MICROPROCESSOR REPORT

