
than two million PCs. Before, users had to download and
install the free ATI Stream runtime separately.

By making ATI Stream an integral part of its drivers,
AMD is strengthening its competitive position against
Nvidia, the only other major vendor of PC graphics cards.
Nvidia added the runtime for its parallel-processing platform
to display drivers in late 2007.

Nvidia’s platform—formerly called the Compute Uni-
fied Device Architecture, now known simply as CUDA—is
the leader in this fast-growing field. Nvidia claims an
installed base of 107 million CUDA-capable GPUs,
although the actual number of systems running CUDA
software is much lower. CUDA has attracted numerous
developers (Nvidia claims 25,000) and great interest among
programmers who are still kicking the tires. AMD’s decision
to bundle ATI Stream into its latest driver offers developers
another good option.

At the same time, new application software is appearing
for both platforms. With relatively little fanfare, massively
threaded parallel processing is going mainstream on millions
of desktops, servers, and notebooks with discrete graphics.
And it’s happening first on GPUs, not on the much-heralded
multicore CPUs from AMD and Intel.

Moreover, it’s coming at a time when many developers
still wring their hands over a perceived lack of programming
tools for multicore processors. But, as Microprocessor Report
noted in an editorial last July, plenty of tools are available.
The real problem is a lack of industry standards. Although
ATI Stream and CUDA are technically similar, they require

programmers to use different variations of C, and their tool
chains and compiled executables are incompatible with
each other’s GPUs. What programmers really seem to want
is fewer choices that are standardized, not more choices that
are proprietary. (See MPR 7/28/08-02, “Tools for Multicore
Processors.”)

OpenCL: Path to Nirvana?
Help is on the way. Both AMD and Nvidia support a new
platform called OpenCL (Open Computing Language). As
the name implies, OpenCL is an open specification, and it’s
intended for parallel processing on systems with heteroge-
neous microprocessor architectures. (Other backers include
Apple, ARM, Broadcom, Ericsson, Freescale, IBM, Intel,
Imagination Technologies, Motorola, Nokia, RapidMind,
Samsung, and Texas Instruments.) The OpenCL technical
specification was completed in November and publicly
released on December 8.

For programmers working with multicore processors—
especially in systems with multicore CPUs and GPUs hav-
ing completely different architectures—OpenCL could be
the long-sought path to nirvana. It defines a common C-
language interface for writing data-parallel code. Like ATI
Stream and CUDA, it can also exploit higher-level task paral-
lelism. (See the sidebar,“OpenCL Tries to Standardize Parallel
Programming.”)

But until the OpenCL specification is widely adopted
and supported by development tools, programmers still have
parallel code to write. Some markets are too competitive for

AMD’S STREAM BECOMES A RIVER
Parallel-Processing Platform for ATI GPUs Reaches More Systems

By Tom R. Halfhi l l {12/22/08-01}

In December, AMD started bundling the runtime package for its ATI Stream parallel-

processing platform with the latest display driver for ATI graphics processors. As users

download this driver, the installed base of Stream-capable systems could swell to more

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

developers to pin all their hopes on a future solution with
uncertain prospects. In addition, some programmers may
prefer today’s solutions, proprietary though they may be. ATI
Stream and CUDA work at a somewhat higher level of abstrac-
tion than OpenCL does, so they retain some advantages.

Over the past two years, MPR has published in-depth
articles on Nvidia’s CUDA, the RapidMind Multicore
Development Platform, and the PeakStream Platform. All
are software-development platforms for parallel processing.
(PeakStream’s products went off the market after Google
acquired the company in 2007.) This article will analyze ATI
Stream as it exists today, before the advent of OpenCL. To
review our previous coverage, see MPR 1/28/08-01, “Parallel
Processing With CUDA,” MPR 11/26/07-01, “Parallel Pro-
cessing for the x86,” and MPR 10/2/06-01, “Number
Crunching With GPUs.”

Parallelism for the Masses
Some critics still question whether PC applications have
enough inherent parallelism worth exploiting. By now,
almost everyone is familiar with the “embarrassingly parallel”
opportunities in high-performance computing (HPC)
applications, such as financial analysis, energy exploration,
pharmaceutical development, and data mining. On the
desktop, the only similar tasks seem to be 3D graphics, for
which GPUs were invented. But those doubts are evaporating
as programmers schooled in sequential coding learn to
refactor their algorithms for parallel execution. They are
unlocking more parallelism than was first suspected.

To prove the point, AMD offers free parallel-processing
software for its latest ATI Catalyst 8.12 display driver. The ATI

Avivo Video Converter transcodes standard-definition (SD)
or high-definition (HD) digital video among several different
formats. Transcoding is brutally slow on a conventional CPU,
even one with multiple cores. Avivo, built on the ATI Stream
platform, divides the work into hundreds of threads that run
concurrently on ATI GPUs, such as Radeon HD 4850 graph-
ics cards. Avivo supports MPEG-1, MPEG-2, MPEG-4/DivX,
Windows Media Video (WMV), H.264/AVC, and other for-
mats. It allows users to convert video from camcorders,
DVDs, and websites for playback on portable devices.

AMD says Avivo can transcode an hour’s worth of
video from MPEG-2 1080p HD format to H.264 320 × 240
format (suitable for an Apple Video iPod) in only 12 minutes.
The same job takes 3 hours 23 minutes on an Intel Core 2
Duo processor running at 3.0GHz. An enhanced commercial
version of Avivo, CyberLink’s PowerDirector 7, is scheduled
for release in 1Q09. A similar product, called Badaboom, is
available from Elemental Technologies for Nvidia’s CUDA,
except that Badaboom is intended for higher-quality
transcoding, especially between high-resolution formats.

More parallel-processing software for GPUs is coming—
or is already here. ArcSoft’s TotalMedia Theater, scheduled
for release in 1Q09, uses ATI Stream to upscale SD video to
1080p HD on PCs. Adobe is accelerating Photoshop Cre-
ative Suite 4, After Effects, Flash, and Acrobat Reader. Win-
dows Vista uses GPU acceleration in Picture Viewer, and
Microsoft Expression uses it to encode audio and video con-
tent for Silverlight, WMV, and WMA. Microsoft PowerPoint
2007 already has an option for GPU acceleration. Additional
desktop applications with great potential for parallelism
include audio/video editors, video games (especially physics
and artificial-intelligence algorithms), and local search
engines.

Critics object that many of the aforementioned products
use the GPU only, or primarily, for graphics processing, not
for general-purpose computing. Although it’s “parallel pro-
cessing,” they say, it’s no more innovative than the usual
graphics processing in games. Their point is a fine one.
From our perspective, the bottom line is that a growing
number of tasks once executed slowly in sequential code on
CPUs are now executing rapidly in parallel code on GPUs.
That many of those tasks are graphics oriented is natural.
GPUs, first and foremost, are graphics processors. But there’s
definitely a trend toward delegating other tasks, such as video
transcoding, to GPUs. We expect to see many more. (Nvidia
says that more than 160 nongraphics applications are running
on CUDA.) Without them, a GPU that isn’t running a game is
little more than a case heater.

Today, parallel processing is no longer a hammer in
search of a nail. The proliferation of massively threaded GPUs
with general-purpose compute engines is driving a revolu-
tion in software development. It’s similar to the transition
from assembly language to high-level compiled languages in
the 1980s—except this time, the big winners are users, not
programmers. For possibly the first time in the history of

2

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 1. AMD’s nomenclature for an ATI GPU varies according to
the target application. In the context of general-purpose computing,
the GPU is a “stream processor,” which is composed of multiple
SIMD engines, thread processors, and stream cores. The numbers of
these components may vary from one generation of GPU to another.
The latest ATI RV770 has 10 SIMD engines, each with 16 thread
processors. Each thread processor has five general-purpose stream
cores, which are ALU/FPU function units. For graphics processing,
stream cores are pixel shaders.

3

computing, software (independ-
ently of hardware) is getting faster,
not slower.

The Evolution of ATI Stream
The ATI Stream parallel-processing
platform has followed roughly the
same evolutionary path as Nvidia’s
CUDA, although CUDA has evolved
a little faster. For both, the most
crucial step came three years ago.
That’s when graphics processors
began moving beyond the efficient
but rigid fixed-function graphics
hardware of earlier GPUs toward
logic that is more general purpose
and programmable. The dedicated
pixel shaders of the past have
become flexible compute engines
with rudimentary function units
and caches. This new “unified
shader model” is the opposable
thumb of GPUs—it allows them to
perform a greater variety of tasks.

Although GPUs remain
highly optimized for 3D graphics,
they become “stream processors” in
their general-purpose (GPGPU)
guise. AMD’s latest GPU chip is the
ATI RV770, which is found on ATI
Radeon, FireStream, and FirePro
graphics cards. As Figure 1 shows,
an AMD stream processor contains
several SIMD engines. (The RV770
has 10.) Each SIMD engine has
multiple “thread processors.” (The
RV770 has 16 of them per SIMD
engine.) Inside each thread proces-
sor is a cluster of “stream cores,”
which are like function units in
CPUs. (The RV770 has five general-
purpose stream cores per thread
processor, for a total of 800 stream
cores on chip.)

Admittedly, the new termi-
nology is a little confusing. It helps to visualize thread
processors as five-way VLIW (very long instruction word)
engines. In VLIW computing, a special compiler bundles
multiple assembly-level instructions to maximize utilization
of the processor’s function units. If a five-way VLIW proces-
sor has four ALUs and one FPU, the compiler tries to bun-
dle four integer instructions with a floating-point instruc-
tion, so that all five operations in the instruction word can
issue in parallel. The same principle applies to an ATI thread
processor.

As Figure 2 shows, the five general-purpose stream cores
in a thread processor have slightly different capabilities. Four
stream cores (known as the x, y, z, and w cores) are simpler
function units that can perform 32-bit integer and 32-bit
(single-precision) floating-point operations. The fifth general-
purpose stream core, known as the “T-stream core,” is a little
more sophisticated—it can also perform transcendental
operations.

Until recently, GPUs from AMD and Nvidia were limited
to single-precision floating-point math. It was good enough

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 2. Each SIMD engine in an ATI GPU/stream processor contains multiple thread processors, and
each thread processor contains multiple stream cores. Not all stream cores are equal. In the ATI RV770,
the “T-stream core” is a beefier function unit, capable of performing transcendental operations as well
as 32-bit integer and 32-bit floating-point operations. The other four general-purpose stream cores—
known as x, y, z, and w—perform basic 32-bit integer and floating-point operations. A sixth stream
core is dedicated to branch instructions. Each thread processor has a local register file shared by the
stream cores.

4

for 3D graphics, but it impaired their usefulness in HPC
applications that demand greater precision. The latest AMD
and Nvidia GPUs can handle double-precision (64-bit) float-
ing point, albeit at a slower rate than single precision.

In the case of the ATI RV770, each stream core in a thread
processor can execute one single-precision multiply-add
(MADD) instruction per clock cycle. Each MADD is two opera-
tions, so the peak theoretical throughput is 1.2 teraflops at the
maximum clock frequency of 750MHz. (That’s 800 stream cores
× 2 operations per cycle × 750MHz = 1.2 trillion operations per
second.) To execute a double-precision MADD, all four of the
simpler stream cores in a thread processor must gang together.
(The T-stream core is idle.) Therefore, the peak double-precision
throughput is one-fifth the rate of peak single-precision
throughput—240 gigaflops vs. 1.2 teraflops, at 750MHz.

ATI Stream Programming Model
The previous overview of the ATI GPU architecture makes
the ATI Stream programming model easier to grasp.
Although ATI Stream tries to shield programmers from low-
level architectural details, some architectural knowledge
definitely helps, even when writing high-level code. A com-
mon mistake, says Michael Chu, AMD’s product manager for
ATI Stream software, is to write programs that underutilize
the vast threading resources of the processor. The result is
disappointment when the threadbare program doesn’t run
much faster than a single-threaded version.

For programmers, the first step is to analyze the appli-
cation, breaking down the data into chunks that can exe-
cute in parallel as independent threads. Next, programmers

write their source code in a special version of C, with exten-
sions for expressing data-level parallelism. Finally, pro-
grammers compile the code. Figure 3 illustrates the ATI
Stream programming model.

Currently, ATI Stream uses an AMD-enhanced version
of the Brook C compiler. Brook was developed at Stanford
University for a parallel-computing project launched in the
1990s. AMD’s version is called Brook+. Because it’s based on
the open-source Brook compiler, Brook+ is open source, too.
The main difference is the back-end code generator, which
AMD has modified for ATI Stream. (More options are com-
ing. In November, the Portland Group—a subsidiary of
STMicroelectronics—announced it will adapt its Fortran
and C compilers to AMD’s x86 and ATI processors.)

Compilation for ATI Stream differs from traditional
compilation in two ways. First, Brook+ targets processors with
two completely different architectures: the x86-compatible
host CPU and the ATI GPU. For the host, Brook+ translates
its variation of ANSI C into a standard C++ source file,
which must be further compiled into an x86 binary file by
another compiler. (Any C++ compiler works.)

For the GPU, Brook+ creates a special intermediate-
language (IL) file that resembles high-level assembly lan-
guage. AMD’s IL isn’t specific to any particular hardware
implementation. It’s a generic “assembly language” that can
run on many different ATI GPUs. At runtime, a hardware-
abstraction layer known as the AMD Compute Abstraction
Layer (CAL) translates the IL into executable code for the
GPU. Figure 4 is a diagram of the ATI Stream tool chain and
runtime module.

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 3. ATI Stream programming model. The square at left represents an array of threads operating on chunks of data in an application program.
A scheduler in the stream processor (GPU) maps the threads onto the thread processors diagrammed in Figure 2. The number of threads that can
execute in parallel depends on the resources of the processor. The latest ATI RV770 chip has 800 stream cores in its 160 thread processors, so it
can execute a maximum of 800 threads in parallel. Additional threads can run concurrently but must be time-sliced.

5

Lower-Level Programming Is Possible
CAL permits AMD to change the architectures of ATI GPUs
without breaking application software. Thanks to this abstrac-
tion layer, source code written in Brook+ can run without
modification on different ATI GPUs—though it may not
run with optimum performance.

Earlier, we compared the thread processors of an ATI
RV770 with a five-way VLIW machine. A classic drawback
of VLIW is that developers usually must recompile their
software for different hardware implementations that have
different complements of function units. In our previous
VLIW example, the five-way VLIW machine with four ALUs
and one FPU is ideal for executing instruction-word bundles
having four integer operations and one floating-point oper-
ation. If a later generation of the VLIW processor has three
ALUs and two FPUs, the previously compiled program either
won’t run as efficiently or won’t run at all.

To some extent, the same principle applies to stream
processing on an ATI GPU. Although the abstraction layer
in CAL allows ATI Stream programs to run on different ATI
GPUs without recompilation, developers may find recompi-
lation desirable to take advantage of the expanded resources
in future processors.

When ATI Stream made its debut in 2006, the platform
was based on a lower-level abstraction layer known as Close
to Metal (CTM). Although CAL has replaced CTM in the lat-
est generation of ATI Stream, adventurous developers can
still program the GPU at a lower level by using IL instead of
Brook+. AMD doesn’t encourage the practice, because IL
resembles assembly language, is less portable than Brook+ C,
and requires a thorough understanding of the GPU’s archi-
tecture. As Figure 5 shows, the ATI Stream tool chain includes
a utility called the GPU ShaderAnalyzer that allows program-
mers to view and modify IL code.

Threading Is Partly Automated
Brook+ isn’t the long-sought magic compiler that automati-
cally extracts massive parallelism from sequential source code.
Programmers must explicitly identify the data-level paral-
lelism when writing their code. Therefore, existing sequential
code needs some refactoring for ATI Stream.

However, Brook+ doesn’t require programmers to
write code that explicitly spawns threads and manages their
life cycles in the same way that conventional threading in C,
C++, or Java does. Brook+ and CAL handle that drudge
work. The CAL runtime package also tries to discover some
parallelism that programmers miss. Even so, as we’ll explain
shortly, programmers shoulder some responsibility for
threading in Brook+.

In addition to spawning and managing threads, CAL and
the GPU’s thread dispatcher automatically map the threads to
the arrays of stream cores. This job is very important, because it
provides some abstraction between the hardware and software.

For example, the ATI RV770 can execute a maximum of
800 parallel threads. (10 SIMD engines × 16 thread processors

× 5 stream cores = 800.) But programmers needn’t divide their
data into exactly 800 chunks. If there are fewer chunks, some
stream cores will be idle. If there are more chunks, the proces-
sor’s thread scheduler automatically time-slices the threads.
This degree of abstraction allows programmers to write code
that will spawn virtually any number of threads without wor-
rying whether the program will run on a particular processor.

Usually, it’s better to create too many threads than too
few threads. If there aren’t enough threads to occupy all the
stream cores, the program isn’t making the most of the GPU’s
resources. Time-slicing is generally preferable to underuti-
lization. As future generations of processors add more stream
cores, the thread scheduler does less time-slicing. Eventually,
a future processor may have enough stream cores to com-
pletely eliminate the need for time-slicing, allowing all
threads to execute simultaneously.

Programmers Learn to ‘Think Parallel’
The biggest challenge for programmers is analyzing the appli-
cation and dividing the data into thread-friendly chunks. This
is where programmers accustomed to sequential processing
often stumble. Their inclination is to write loops that walk
through large datasets, manipulating the data iteratively. But
a loop represents a single thread of execution that ignores any
parallelism inherent in the data.

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 4. Source code written in ATI Stream’s flavor of C splits into two
forks: code destined for the x86 CPU and code destined for the ATI GPU.
For the x86 host processor, AMD’s Brook+ compiler creates generic C++
code that any standard C++ compiler can handle. In the other fork, the
Brook+ “kernel compiler” generates special intermediate-language (IL)
code. At runtime, AMD’s Compute Abstraction Layer (CAL) translates IL
code into executable code for the GPU. In December, AMD began
bundling CAL with the latest display drivers for ATI graphics cards, allow-
ing at least two million PCs to run ATI Stream software.

6

Data-level parallelism requires a different approach. The
concept is to divide a large dataset into subsets having no
mutual dependencies—operations that must wait for an oper-
ation in another subset to finish. At first, the opportunities for
parallelism appear elusive. After a few exercises, however,
programmers learn to think about problems in a whole new
way. Even some applications that seem impervious to paral-
lelism can yield surprising results.

In a recent MPR editorial, we described a book-indexing
program written in Microsoft QuickBASIC in the 1980s.
Although this program was designed to run as a single
“thread” of execution on a single computer, it soon became
obvious that it was capable of massively parallel process-
ing—albeit in a crude fashion. If the book index contained
400 entries, the indexing program could run on as many as
400 computers simultaneously. Because there were no
dependencies among the index words, each instance of the
program could “read” the book’s text from start to finish,
looking for occurrences of the single index entry assigned to
it. Later, a human book editor aggregated the results. This
example shows that even a seemingly simple program can

sometimes hide a surprising amount of parallelism. (See
MPR 3/31/08-01, “Think Parallel.”)

Of course, parallelism makes more sense in some cases
than it does in others. Sometimes there isn’t enough work in
an individual thread to amortize the overhead of spawning
and managing a large number of threads. Sometimes there
isn’t enough I/O bandwidth to fetch the data needed by
hundreds or thousands of threads. Sometimes the datasets
are too constricted by dependencies to be divided into
thread-friendly chunks.

However, this is exactly the kind of analysis program-
mers must do when evaluating the potential data parallelism
in an application. Opportunities for parallelism are not imme-
diately obvious. As this practice becomes an integral part of
the computer-science curriculum, it will no longer be the
relatively rare skill it is now.

Kernel Functions Run on GPU
Now for a concrete source-code example. In ATI Stream ter-
minology, a “kernel” is a special Brook+ function that uses the
GPU to perform operations on data. Ideally, these operations

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 5.The GPU ShaderAnalyzer utility for ATI Stream. This tool allows programmers to view the special intermediate-language (IL) code generated
by the Brook+ compiler. The Brook+ C source code is visible in the left pane, and the corresponding IL code is visible at right. The lower pane displays
performance statistics for this code. Programmers can tweak the IL code for better performance, although working at this level is like programming in
assembly language and demands thorough knowledge of the complex GPU architecture.

7

will be parallel SIMD operations that use the multiple
stream cores in each thread processor. Brook+ compiles
all the code in a kernel for the GPU stream processor.

For example, adding the elements of one array to
the elements of another array is an operation that can
execute in parallel on many elements at the same time. In
an ATI RV770, which has five general-purpose stream
cores per thread processor, each thread processor can per-
form five 32-bit integer or single-precision floating-point
adds in parallel. Figure 6 shows the kernel definition.

The new keyword kernel specifies that Brook+ will com-
pile this function for execution on the GPU, not on the x86
CPU. The familiar keyword void specifies that this function
won’t return a value to the CPU. The arbitrary name of this
kernel is sum(), and its parameter list specifies two input
arrays of single-precision floating-point numbers and the
same type of output array for the results. Note that sum() will
return results to the GPU via the output array, not to the CPU
via a conventional return value, which is why the program
declares this kernel function void.

Within the curly braces is the heart of this simple kernel.
In a single line of code, it adds the two input arrays (a and b)
and stores the results in the output array (c). In a conventional
C program, this operation requires a loop that steps through
the arrays and adds their elements iteratively. However, as
explained above, a loop would generate a single thread of exe-
cution that wouldn’t run any faster on the GPU than it
would on the CPU. To leverage the resources of the GPU, the
kernel must spawn multiple threads capable of executing in
parallel.

That’s exactly what this line of code does. Although it
appears to be a simple addition, at runtime it will generate
numerous threads. If the GPU has enough thread processors
and stream cores to handle the number of threads created,
then all threads will run in parallel. Otherwise, some threads
will run in parallel and others will be time-sliced by the
GPU’s thread dispatcher.

Setup Code Runs on CPU
So far, this example looks ridiculously simple—too simple.
It doesn’t reveal how the kernel determines the number of
threads to create. Nor does it show how the programmer
divides the data into thread-friendly chunks. These critical
operations happen outside the kernel, in setup code that
runs on the host CPU. Figure 7 shows the CPU code.

Remember that Brook+ translates all code in main()
into standard C++, which another tool will compile for the
x86 CPU. First, main() defines two integer variables (i and j)
for use as loop counters later. Next, it defines three 10- × 10-
element arrays (a, b, and c) of single-precision floating-point
types. Note that these array declarations use angle braces (< >)
instead of the usual brackets ([]). In Brook+, angle braces
indicate special arrays called “streams.”A stream is a collection
of data (usually stored in an array) on which the GPU can
perform operations using parallel threads.

Next, main() defines three conventional 10- × 10-element
arrays (input_a, input_b, and output_c) using standard C-
language brackets. These arrays are the same datatypes (sin-
gle-precision floating point) as the streams. Data in these
arrays will be stored in system memory accessible to the CPU.
In contrast, data in stream arrays is stored in the GPU’s video
memory on the graphics card. In other words, each processor
will have a copy of the arrays in its own memory. Why the
redundancy? Because an ATI GPU can access video memory
at about 100GB/s, whereas references to system memory
must traverse the much slower PCI Express bus.

The next block of code in main() looks more familiar.
Two nested loops walk through two of the conventional
arrays (input_a and input_b), filling them with dummy
data—the iterative values of the loop counters, typecast from
integers to floats. A real program would replace this code with
a routine that fills the arrays with real-world data, probably
fetched from mass storage. Also, a real program could step
through the conventional arrays in larger increments or in a

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

Figure 6. This example code defines a kernel function in Brook+ C. This kernel
will be compiled for the ATI GPU. The new keyword “kernel” distinguishes
between data-parallel functions intended for the GPU and conventional func-
tions intended for the CPU.

Figure 7. An example main() function in Brook+ C. This code prepares
data for the kernel function in Figure 6, then calls the kernel and
stores the results. All code in main() will be compiled for the x86 host
processor.

8

scatter-gather pattern to populate the stream arrays with data
in any manner desired.

In the last four lines of code, the real work gets done.
Brook+ has a special function called streamRead() that
copies the contents of a conventional array into a stream array.
In other words, streamRead() copies data from system
memory to video memory. In this example, two calls to
streamRead() fill the two input streams (a and b) with data
from the conventional arrays (input_a and input_b).

Next, the program calls the kernel function sum(), pass-
ing along the two input streams and receiving the summed
results in the output stream (c). Finally, the program calls a
special Brook+ function, streamWrite(), to copy the output
stream into the conventional output array (output_c). As the
counterpart of streamRead(), streamWrite() copies data from
video memory to system memory, where the CPU can use it.

It’s SIMD, Not MIMD
At first glance, this example seems to have no code that
explicitly declares threads, assigns tasks to threads, and termi-
nates threads when their work is done. But in an abstract way,
it does. The statements defining the streams as 100-element
arrays will direct the thread dispatcher to launch 100
threads when the program calls the sum() kernel. When
sum() adds the arrays together, each addition operation will
run as a separate thread on its own stream core. Excluding
the overhead of setting up these operations, the GPU will
add the 100-element arrays together in one clock cycle.

Technically, the Brook+ thread-programming model
is explicit, because programmers determine the number of
threads by dividing a dataset into subsets of arrays having
no dependencies. It is the programmer’s job to make those
decisions. In a truly implicit threading model, the compiler
or processor automatically finds the parallelism. Even so,
Brook+ isn’t nearly as explicit as C++ p-threads or Java
threads. Conventional threading models require program-
mers to write code that explicitly declares threads, assigns
tasks to threads, and terminates threads. Conventional
threading models are difficult to debug and manage beyond
a relatively small number of threads, whereas Brook+ makes
it easy to create thousands of threads. (See MPR 4/30/07-02,
“The Dread of Threads.”)

Our example creates only 100 threads, leaving 700 of the
stream cores in an RV770 twiddling their opposable thumbs.
Ideally, the programmer would find a way to keep all 800
stream cores busy. Perhaps, in our example, the limitation is
that a larger dataset isn’t available. Or, maybe the dataset can’t
be divided into subsets larger than 100 elements without
stalling on data dependencies.

Unfortunately, one method of occupying more stream
cores—executing multiple kernels in parallel—isn’t supported
by the ATI Stream platform at this time. ATI Stream and ATI
GPUs are based on a SIMD architecture, which applies a
single operation to multiple data elements. To run multiple
kernels in parallel, the hardware and software must support

a MIMD architecture, which allows multiple instruction
streams to operate on multiple data elements. That is task-
level parallelism.

One exception is that ATI Stream can execute multi-
ple streamRead() functions in parallel. CAL handles the
scheduling at runtime, depending on the GPU’s resources.
Programs can anticipate this capability by calling a CAL func-
tion that returns information about the hardware at runtime.

Alternatives Are Remarkably Similar
ATI Stream has much in common with Nvidia’s CUDA, the
RapidMind Multicore Development Platform, and Intel’s
software architecture for future Larrabee processors. All rely
heavily on data parallelism. All use proprietary variations of
standard C or C++ that introduce new statements for
expressing parallelism. All have a hardware-abstraction
layer that insulates programmers from gory details of the
microarchitecture.

Within this group, RapidMind’s platform stands out as
the most different. Whereas the others support only the ven-
dor’s own microprocessor architecture, RapidMind supports
multiple architectures—including the GPUs from both
AMD and Nvidia, the x86, and IBM’s Cell Broadband
Engine. Developers pursuing top performance can move
their RapidMind software from one processor architecture
to another with relatively little effort. RapidMind’s runtime
module further optimizes the code by automatically applying
any techniques for instruction-level parallelism that are
available on the target processor. (See MPR 11/26/07-01,
“Parallel Processing for the x86.”)

CUDA and ATI Stream are very much alike, a reflec-
tion of their similar target hardware—GPUs supporting the
unified shader model. These GPUs have hundreds of simple
function units, so data parallelism is their dominant threading
model. Some language extensions in ATI Stream and CUDA
are virtual clones. For instance, the streamRead() function
in ATI Stream that copies data from system memory to
video memory is essentially the same as the cudaMemcpy()
function in CUDA. Thanks to these similarities, program-
mers who learn either ATI Stream or CUDA should be able
to switch platforms with little trouble. (See MPR 1/28/08-
01, “Parallel Processing With CUDA.”)

Mainly, the choice is between which vendor currently
ships the faster GPU, a matter of much contention. The lat-
est ATI GPUs can execute more peak theoretical flops than
the latest Nvidia GPUs can. Nvidia claims its GPUs can uti-
lize more parallel threads in real-world HPC applications.
MPR found only one HPC program written for both ATI
Stream and CUDA: Stanford University’s Folding@home
client, a protein-folding program freely distributed over the
Internet to thousands of computers and game consoles.
According to the latest statistics from Stanford, both com-
panies’ GPUs deliver almost exactly the same floating-point
throughput when running this program—about 110
gigaflops. In comparison, the IBM Cell processor in the Sony

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

9

PlayStation 3 delivers about 28 gigaflops with Folding@home,
and the x86 processors in Windows PCs average less than 1
gigaflops.

Another parallel processor coming down the pike is
Intel’s Larrabee, a manycore x86 chip with enhanced 16-lane
SIMD engines. Judging from public disclosures, Intel’s
approach will be much like ATI Stream and CUDA. Larrabee
will use its wide SIMD resources to exploit massively
threaded data parallelism on multiple levels. Although Intel
is using different terminology to describe these techniques—

subdividing threads into finer components known as
“strands” and “fibers”—the concepts are the same.

One important difference is that Larrabee is capable of
greater MIMD-style task parallelism than existing GPUs are.
Each Larrabee x86 core has four-way hardware multi-
threading in addition to a 16-lane SIMD engine. Those
high-level “threads” are actually process-level tasks, so they
can be completely different programs—even an operating
system. As an x86 processor, Larrabee doesn’t need a sepa-
rate host processor, as a GPU does. Larrabee can run any

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

OpenCL is distantly related to OpenGL, the widely sup-
ported application programming interface (API) for graphics.
Actually, OpenCL and OpenGL have little in common except
similar names and the goal of insulating software developers
from the intricacies of different microprocessor architectures.

Whereas the “GL” in OpenGL stands for Graphics
Library, the “CL” in OpenCL stands for Computer Language.
The terminology succinctly captures the difference. Instead of
merely providing an API library, OpenCL modifies C and C++
for parallel programming. OpenCL also opens the door to
other languages, such as Fortran.

Apple, AMD, and Nvidia have been prominent backers
of this initiative. Apple plans to support OpenCL in a future
release of Mac OS X (Snow Leopard) and played a key role
in forming the OpenCL Compute Working Group last June.
Apple’s “Grand Central” technology for programming multi-
core processors is partly based on OpenCL.

AMD was among the first to join the OpenCL initiative.
Nvidia vice president Neil Trevett is the chairperson of this
committee, which is part of the Khronos Group, an industry
consortium originally created to standardize multimedia APIs.
Khronos announced the OpenCL 1.0 specification on
December 8.

OpenCL enjoys such broad support that it seems almost
guaranteed to alter the direction of software development for
parallel processing. Members include 3DLabs, Activision Bliz-
zard, AMD, Apple, ARM, Barco, Broadcom, Codeplay, Elec-
tronic Arts, Ericsson, Freescale, HI, IBM, Intel, Imagination
Technologies, Kestrel Institute, Motorola, Movidia, Nokia,
Nvidia, QNX, RapidMind, Samsung, Seaweed, Takumi, Texas
Instruments, and Umeå University (Sweden). The most notable
absence is Microsoft, which is building parallel-processing
technology on the foundation of its DirectX graphics API.

Unlike OpenGL, which is specific to graphics, OpenCL
aims to standardize general-purpose parallel programming
for any application. It is especially suitable for heterogeneous
systems—those having two or more microprocessor architec-
tures. That includes PCs, which have x86-compatible CPUs
and discrete or integrated GPUs. Many cellphones and other
embedded systems also fit this category. OpenCL looks ideal

for AMD’s future Fusion processors, which will integrate x86-
compatible CPU cores with an ATI GPU on the same chip.

Like ATI Stream, Nvidia’s CUDA, and the RapidMind
Multicore Development Platform, OpenCL adds new state-
ments to C for expressing data-level parallelism. Essentially,
these statements perform the same functions as similar state-
ments in the ATI Stream, CUDA, and RapidMind versions of C.
OpenCL builds on C99, an ISO specification of ANSI C issued
in 1999. The threading model for data parallelism in OpenCL
closely resembles the models in ATI Stream, CUDA, and Rapid-
Mind. Threading is largely implicit, but OpenCL allows pro-
grammers to manage threads more explicitly, if they wish.

In addition to data parallelism, OpenCL supports task-
level parallelism. Unlike ATI Stream, it can concurrently exe-
cute multiple kernels on multiple CPUs, GPUs, or systems
with mixed architectures. Because OpenCL is conceptually
similar to RapidMind’s solution, that company is adopting
OpenCL for its multiarchitecture platform. Nvidia is also
embracing the specification and announced on December 8
that OpenCL programs will run on CUDA.

Although today’s ATI Stream platform isn’t built on
OpenCL, AMD doesn’t regard it (or RapidMind, for that
matter) as an unfriendly competitor. As a member of the
OpenCL group, AMD worked with other companies to
develop the standard and announced on December 8 that it
is adopting the specification. AMD plans to integrate an
OpenCL-compatible compiler and runtime package with a
new version of the ATI Stream software development kit
(SDK). This SDK, version 1.4, is scheduled for release in 1H09.
It will allow OpenCL programs to run on ATI GPUs as handily
as ATI Stream programs do.

Beyond that, AMD could modify its Brook+ version of C
to incorporate the parallel-programming extensions of
OpenCL. This option would provide an easy migration path
for Brook+ programmers. Further down the road, AMD could
offer its own OpenCL tool chain or leave that exercise to third
parties. AMD wants to sell chips, not tools. If OpenCL catches
on, the ATI Stream platform as it exists today could become
redundant. But an industry standard for parallel programming
would please AMD—and millions of software developers.

O p e n C L Tr i e s t o S t a n d a r d i z e P a r a l l e l P r o g r a m m i n g

10

x86-compatible operating system and act as the master
processor for its own SIMD slaves. (See MPR 9/29/08-01,
“Intel’s Larrabee Redefines GPUs.”)

AMD hopes to introduce similar microprocessors in
the future. AMD’s Fusion project aims to integrate the GPU
and CPU on one chip. This should greatly improve perform-
ance, because the GPU and CPU will no longer need to
exchange data over the system’s PCI Express bus. Instead, a
wide on-chip bus will let them transfer data almost instanta-
neously, and perhaps share system memory, too. Unfortu-
nately for AMD, the Fusion project has been repeatedly
delayed. In November, AMD said the first Fusion processors
won’t begin production until 32nm fabrication is available—
2011 at the soonest.

It’s Good Enough for Now
Another alternative to ATI Stream that this article hasn’t dis-
cussed is microprocessors designed specifically for general-
purpose parallel processing. MPR has covered several of these
advanced architectures. Their big advantage is that parallel
processing is an inherent feature from the start, not a retrofit.
The same architects who design the processor usually play a
major role in designing the software tools, so the hardware
and software are tightly integrated. Indeed, sometimes the

tools were created first, and the CPU architecture was
designed to suit the tools.

The biggest drawback of these architectures is that
they require a commitment to a single vendor for both the
hardware and software—and the vendor is often a startup
with an uncertain future. Nevertheless, these visionary solu-
tions are compelling. For three examples, see MPR 10/10/06-
01, “Ambric’s New Parallel Processor,” MPR 7/24/06-02,
“MathStar Challenges FPGAs,” and MPR 11/5/07-01,
“Tilera’s Cores Communicate Better.” Note, however, that
MathStar has ceased operations and Ambric is currently
looking for a buyer. Times are tough for startups.

Of course, these days, even the futures of long-established
companies like AMD and Nvidia are not as certain as they
used to be. Intel’s arrival in this market with Larrabee in
2009 could shake things up still further. Nevertheless, the
reality is that ATI and Nvidia GPUs have huge installed
bases right now. There’s nothing unproven about their
hardware or software.

It’s possible that ATI Stream will be a temporary bridge
to better development tools and programming languages,
either from third-party vendors like RapidMind or from
industry consortiums like the OpenCL group. At this point,
it’s unclear how soon (or whether) a truly industrywide
standard for parallel programming will emerge.

Meanwhile, programmers have jobs to do and code to
write. GPUs, in their new guise as “stream processors,” have
tremendous potential. If an application lends itself to data
parallelism and is important enough to justify the develop-
ment effort, there’s little reason to wait for the perfect solution
to appear someday. Even if the code needs rewriting later, it
will be useful now, and the learning process will be valuable—
especially if OpenCL catches on, because it’s so similar.

Finally, consider the possibility that parallel code may
not enjoy the historic longevity of sequential code. COBOL
lives forever, but programs written for any parallel processor
in any language may need rewriting more frequently. Paral-
lelism is a paradigm shift, and paradigm shifts change the
rules.

© I N - S T A T D E C E M B E R 2 2 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

AMD’s Stream Becomes a River

To subscribe to Microprocessor Report, phone 480.483.4441 or visit www.MPRonline.com

P r i c e & Av a i l a b i l i t y
AMD’s ATI Stream platform for ATI GPUs is available on
AMD’s website. These software-development tools are
free. For more information, see:

www.amd.com/stream
Starting in December, display drivers for recent ATI

GPUs include the ATI Stream runtime package. These
drivers can be downloaded for free. For more informa-
tion, see:

http://ati.amd.com/support/driver.html

