
	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e 	 i n s i d e R ’ s 	 g u i d e 	 T o 	 M i c R o P R o c e s s o R 	 h a R d w a R e 	

Itty-BItty 32-BItters
Tiny 32-Bit Processor Cores Race to Replace 8- and 16-Bit Chips

By Tom R. Halfhi l l {5/11/09-01}

not	everyone	thinks	Moore’s	law	is	a	quota.	Some	cpU	architects	strive	to	design	smaller	

and	smaller	microprocessor	cores,	bucking	the	trend	toward	larger	processors.	In	the	Lilli-

putian	world	of	microcontrollers	and	deeply	embedded	systems,	smaller	is	definitely	better.

Microprocessor Report	recently	covered	arM’s	new	cortex-
M0,	the	smallest	implementation	of	the	world’s	most	popular	
32-bit	embedded-processor	architecture.	at	a	mere	12,000	
gates,	the	cortex-M0	is	about	one-third	the	size	of	arM’s	
all-time	best	seller,	the	14-year-old	arM7tDMI.	(See	MPR
3/2/09-01,	“arM’s	Smallest	thumb.”)	However,	our	report	
overlooked	 two	 licensable	 processors	 that	 compete	 in	 the	
same	flyweight	class	and	have	similar	capabilities.

one	 challenger	 hails	 from	arM’s	 home	 town	 of	 cam-
bridge,	 england.	 cambridge	 consultants	 offers	 a	 line	 of	
16-	and	32-bit	processor	cores	in	its	Xap	family,	which	now	
includes	the	hybrid	16/32-bit	Xap5a.	at	a	minimum	imple-
mentation	of	18,000	gates,	it’s	50%	larger	than	the	cortex-
M0	but	promises	frugality	in	other	ways.

across	the	channel,	a	small	French	company	named	cor-
tus	 offers	 the	 32-bit	 apS3	 processor	 core.	 at	 9,500	 gates,	
it’s	21%	smaller	than	the	cortex-M0.	While	comparing	the	
Xap5a	 and	 apS3	 with	 arM’s	 processor,	 we	 will	 also	 take	
a	 closer	 look	 at	 tensilica’s	 Diamond	 Standard	 106Micro.	
It’s	a	20,000-gate	processor	core	aimed	at	the	same	market.	
although	these	alternatives	aren’t	as	famous	as	arM’s	prod-
ucts,	 they	 are	 worth	 considering	 when	 upgrading	 from	 8-	
and	16-bit	processors.

of	course,	the	main	benefits	of	a	32-bit	design	are	more	
processing	power,	larger	memory	addressing,	and	greater	I/o	
bandwidth.	all	 but	 one	 of	 the	 cores	 covered	 in	 this	 article	
have	32-bit	flat	memory	addressing,	so	they	can	access	up	to	
4GB	of	memory	without	bothersome	tricks	like	segmenting	

or	bank	switching.	and	all	but	one	have	32-bit-wide	mem-
ory	 interfaces,	 sometimes	 with	 separate	 buses	 for	 instruc-
tions	 and	 data.	 the	 exception	 in	 both	 cases	 is	 the	 hybrid	
16/32-bit	Xap5a	from	cambridge	consultants.	It	has	24-bit	
addressing,	for	a	maximum	of	16MB	of	memory,	and	a	16-
bit	memory	interface.

the	traditional	drawbacks	of	32-bit	processors,	compared	
with	8-	and	16-bit	cores,	are	their	larger	gate	counts,	higher	
power	consumption,	and	inflated	memory	requirements	for	
32-bit	code.	However,	the	processors	covered	in	this	article	
are	not	traditional	32-bit	processors.	Some	are	no	larger	than	
an	8-bit	8051.	their	 economical	gate	 counts	 reduce	power	
consumption	as	well	as	silicon	area.	they	conserve	memory	
by	 incorporating	 16-bit-long	 instructions	 in	 their	 instruc-
tion	sets,	sometimes	approaching	the	code	density	of	16-bit	
	processors.

all	the	processors	covered	here	are	licensable	and	synthesiz-
able,	so	developers	can	easily	integrate	them	with	peripheral	
logic	 in	 programmable	aSIcs	 and	 Socs.	 they	 are	 ideal	 for	
microcontrollers,	 deeply	 embedded	 systems,	 hard	 real-time	
applications,	and	low-power	systems.	the	only	smaller	32-bit	
programmable	processors	are	roll-your-own	custom	designs.	
they	tend	to	be	application	specific,	riskier	to	implement,	and	
less	blessed	with	development	tools	and	technical	support.

Cortus APS3: King of Lilliput
cortus	is	a	privately	owned	company	with	eight	engineers	
in	Montpellier,	France,	and	a	sales/support	office	in	Silicon	

2 itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

	Valley.	the	founders	and	engineers	have	previous	experience	
at	Bosch,	 Infineon,	Intel,	and	Synopsys.	cortus	specializes	
in	designing	small,	32-bit	processor	cores	to	replace	8-	and	
16-bit	cores	in	microcontrollers,	which	puts	the	company	in	
direct	competition	with	arM’s	cortex-M0.	cortus	proces-
sors	are	currently	used	in	applications	as	mundane	as	cof-
feemakers	and	as	mission-critical	as	nuclear	power	plants.	
one	 customer	 (certicom)	 just	 taped	 out	 a	 45nm	 design,	
though	most	customers	are	using	0.18-micron	processes.

cortus	created	the	apS	architecture	 in	2004	and	began	
shipping	 cores	 in	 2005.	 the	 latest	 implementation	 is	 the	
9,500-gate	apS3,	about	21%	smaller	than	the	base	configu-
ration	of	the	cortex-M0.	an	even	smaller	implementation	
of	the	apS3	is	possible	by	omitting	some	optional	features	
and	 synthesizing	 the	 core	 for	 minimum	 area.	 cortus	 says	
that	 9,500	 gates	 represent	 a	 midpoint	 estimate,	 based	 on	
nanD2-equivalent	gates	after	synthesis	in	Synopsys	Design	
compiler.	 (See	 the	 sidebar,	“Gate	 count?	 Depends	Who’s	
counting.”)

Fundamentally,	 the	 apS3	 is	 a	 rISc	 architecture.	 Most	
instructions	(including	loads	and	stores)	are	simple	enough	
to	execute	at	a	throughput	rate	of	one	instruction	per	clock	
cycle.	However,	like	almost	all	32-bit	embedded	processors,	
it	improvises	on	textbook	rISc	principles	in	several	ways.

Foremost	is	a	mixed	16/32-bit	instruction	set.	By	shorten-
ing	the	simplest	and	most	common	instructions	to	16	bits,	
the	apS3	saves	memory	and	partially	overcomes	the	code-
density	advantage	of	8-	and	16-bit	McUs.	Because	cortus	

designed	the	apS3	with	a	16/32-bit	instruction	set	from	the	
start,	it’s	a	clean	implementation,	well	suited	for	high-level	
compilers.	no	16/32-bit	mode	switching	 is	necessary.	the	
cortus	GnU-based	c/c++	compiler	 freely	mixes	16-	and	
32-bit	instructions	together.

arM	cortex	processors	can	freely	mix	16-bit	and	32-bit	
instructions,	but	earlier	arM	processors	like	the	arM7	and	
arM9	families	cannot.	to	execute	16-bit	thumb	instruc-
tions,	 they	 require	 a	 mode	 switch.	 Likewise,	arM	 cortex	
processors	can	handle	 interrupts	with	16-bit	 instructions,	
but	older	arM	processors	must	revert	to	32-bit	mode.	the	
cortex-M0	instruction	set	consists	almost	entirely	of	16-bit	
thumb	and	thumb-2	instructions,	so	mode	switching	isn’t	
necessary,	and	interrupt	handlers	can	use	16-bit	code.

arM’s	tradeoff	for	the	cortex-M0’s	compact	instruction	
set	is	software	compatibility.	although	software	written	for	
the	 cortex-M0	 is	 upward	 compatible	 with	 other	 cortex	
processors,	 existing	 32-bit	 arM	 software	 isn’t	 downward	
compatible	 with	 the	 cortex-M0.	 of	 course,	 downward	
compatibility	matters	 little	 to	developers	upgrading	an	8-	
or	16-bit	design.

the	mixed	16/32-bit	instruction	set	isn’t	the	only	reason	
the	cortus	apS3	is	about	the	same	size	as	an	8-bit	8051.	It	
also	 departs	 from	 the	 classic	 rISc	 model	 by	 having	 only	
16	general-purpose	registers	(Gpr),	not	the	usual	comple-
ment	of	32	Gprs.	register	r0	always	equals	zero,	and	r1	
is	reserved	for	the	GnU	stack	pointer.	that	leaves	14	unal-
located	 registers	 plus	 a	 dedicated	 return-address	 register.	

Small	 register	 files	 usually	 spell	 trouble	 for	
compilers,	but	cortus	claims	the	GnU	c/c++	
compiler	is	tuned	so	well	for	the	apS3	that	reg-
ister	congestion	isn’t	an	issue.	In	any	case,	the	
apS3	 makes	 a	 common	 compromise	 in	 this	
respect.	 none	 of	 the	 other	 32-bit	 processors	
covered	in	this	article—including	the	cortex-
M0—has	32	Gprs.

although	 the	apS3’s	 gate	 count	 may	 seem	
suspiciously	small,	cortus	didn’t	cut	corners	in	
other	ways	that	stripped-down	configurations	
of	 a	 processor	 core	 sometimes	 do.	 all	 Gprs	
have	two	read	ports	and	one	write	port,	so	they	
can	 load	 two	 32-bit	 input	 operands	 and	 save	
a	32-bit	result.	also,	the	9,500-gate	configura-
tion	 of	 the	 apS3	 implements	 the	 registers	 in	
flip-flop	 logic,	 not	 in	 SraM	 arrays.	 (all	 gate	
counts	 for	 the	 processors	 in	 this	 comparison	
assume	that	registers	are	implemented	in	flip-
flops,	not	in	SraM.)

Pipelined for Speed
Figure	1,	a	block	diagram	of	the	cortus	apS3,	
reveals	a	 few	more	 interesting	 features	of	 this	
puny	 processor.	 By	 default,	 it	 has	 a	 Harvard	
memory	architecture,	with	separate	32-bit	I/o	
buses	 for	 instructions	 and	 data.	 Developers	

Barrel
Shifter

ALU

DMA

CPU

Status

RTT

C
o-

Pr
oc

es
so

r
In

te
rf

ac
e

Multiplier

Flash
Memory

R15

R0 = 0

...
...

.

UART

HW
Breakpoints

RAM

GPIO

Timer

Interrupt
Controller

TAP

JTAG

XBar

= optional

ICache

Figure 1. Cortus APS3 block diagram. During synthesis, developers can implement the
memory interface as a split-bus Harvard or unified-bus von Neumann architecture and
configure it for little- or big-endian memory addressing. DRAM, peripherals, and flash
memory attach to the Cortus crossbar switch. Coprocessors and an instruction cache are
optional. The 32-bit barrel shifter is optional but included in the 9,500-gate configuration.

3itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

preferring	 a	 slimmer	 von	 neumann	 memory	 architecture	
can	unify	the	I/o	buses	with	a	crossbar	switch.

the	 crossbar	 also	 serves	 as	 the	 interface	 to	 peripherals.	
It	can	host	Uarts,	an	interrupt	controller,	timers,	general-
purpose	 I/o	 (GpIo)	 interfaces,	 and	 a	 JtaG	 interface—all	
of	which	cortus	offers	at	no	extra	cost.	However,	the	cross-
bar	interface	is	native	to	the	apS3,	not	an	industry-standard	
interface	like	arM’s	aMBa	High-Speed	Bus	(aHB	or	aHB-
Lite)	or	aMBa	peripheral	Bus	(apB).	If	developers	want	to	
attach	other	peripherals,	the	crossbar	does	support	an	apB	
bridge.

note	 that	 the	apS3	 interrupt	 controller	 is	 a	 peripheral,	
not	an	integral	part	of	the	processor	core.	It’s	not	included	
in	 the	 9,500-gate	 configuration	 of	 the	 apS3.	 adding	 this	
	controller—an	indispensable	feature—will	nudge	the	apS3’s	
gate	count	a	little	higher.	cortus	says	a	controller	support-
ing	10	or	20	interrupts	will	add	only	about	200	gates	of	logic.	
the	controller	is	configurable	and	supports	up	to	256	inter-
rupts,	with	16	priorities.	In	practice,	such	a	large	number	of	
interrupts	is	rarely	needed,	but	they’re	available.

In	 comparison,	 the	 12,000-gate	 base	 configuration	 of	
arM’s	 cortex-M0	 includes	 a	 nested	 vectored	 interrupt	
controller	(nVIc)	with	one	interrupt	 line.	Developers	can	
add	as	many	as	32	lines,	with	four	priorities.	In	addition,	the	
cortex-M0	 base	 configuration	 includes	 a	 32-bit	aHB-Lite	
interface,	 an	 extra	 option	 for	 the	apS3.	 on	 balance,	 then,	
the	cortex-M0	and	apS3	are	nearly	 the	 same	size	 if	 simi-
larly	equipped.	cortus	doesn’t	consider	an	aMBa	bus	to	be	
an	 advantage	 in	 most	 small	 designs,	 because	 it	 introduces	
more	I/o	latency	than	the	apS3’s	native	I/o	interface	does.

after	 an	 interrupt,	 the	apS3	 can	 enter	 a	 service	 routine	
in	 only	 one	 or	 two	 clock	 cycles,	 except	 when	 a	 multicycle	
instruction	 is	 executing.	 those	 (minority)	 instructions	 are	
interruptible	but	lengthen	the	interrupt	latency	to	nine	cycles,	
not	counting	delays	caused	by	memory	wait	states.	the	apS3	
also	supports	a	nonmaskable	critical-error	interrupt.

one	standout	feature	of	the	cortus	apS3	is	an	optional	
instruction	cache.	It’s	the	only	processor	in	this	comparison	
with	such	an	option.	Usually,	processor	cores	 intended	for	
microcontrollers	 shun	 caches,	 because	 their	 unpredictable	
behavior	is	intolerable	in	real-time	systems.	the	apS3	allows	
developers	to	add	an	instruction	cache	as	large	as	2MB,	with	
configurable	cache	lines	(4	to	64K	lines),	line	sizes	(16	or	32	
bytes),	set	associativity	(one,	two,	or	four	ways),	and	burst	
modes.	there’s	no	option	for	a	data	cache.

although	cortus	says	most	apS3	customers	don’t	imple-
ment	 an	 instruction	 cache,	 it’s	 important	 for	 some	 appli-
cations.	It	allows	programs	to	run	directly	from	slow	flash	
memory,	 eliminating	 the	need	 for	DraM.	 It’s	particularly	
useful	for	very	small,	self-contained	systems.

another	 unusual	 feature	 of	 the	 apS3	 is	 its	 instruction	
pipeline.	For	most	operations,	the	pipeline	is	five	stages	long.	
Writeback	requires	seven	stages.	It’s	a	relatively	deep	pipe-
line	for	such	a	small	processor.	consequently,	the	apS3	can	
reach	 higher	 clock	 frequencies	 that	 most	 other	 processors	

in	this	class.	In	a	now-pedestrian	0.13-micron	process,	 the	
apS3’s	worst-case	clock	speed	can	exceed	300MHz.	Devel-
opers	have	achieved	280MHz	in	an	even	older	0.18-micron	
process	and	an	impressive	520MHz	at	65nm.	the	only	other	
processor	 in	 this	group	able	 to	match	 those	 frequencies	 is	
tensilica’s	Diamond	Standard	106Micro,	which	has	a	simi-
larly	deep	five-stage	pipeline.

Customizing With Coprocessors
the	 cortus	apS3	 has	 a	 versatile	 coprocessor	 interface	 that	
lets	 developers	 add	 application-specific	 instructions	 and	
other	hardware.	cortus	uses	this	interface	to	offer	such	tasty	
options	as	a	32-bit	integer	multiplier,	a	16-	×	16-bit	multiply-
accumulate	(Mac)	unit,	a	32/64-bit	FpU,	and	a	16-bit	DSp.

coprocessor	instructions	enjoy	the	same	first-class	status	
as	 native	 instructions.	 they	 have	 full	 access	 to	 the	apS3’s	
registers	and	are	 independently	pipelined.	 In	 fact,	a	native	
instruction	can	bypass	a	coprocessor	instruction	and	finish	
out	of	order	if	they	have	no	mutual	dependencies.

cortus	 says	 the	 coprocessor	 interface	 is	 defined	 so	
abstractly	 that	 Verilog	 writers	 need	 no	 knowledge	 of	 the	
apS3’s	 internal	 mechanisms,	 beyond	 the	 programmer-
visible	 features	 that	 a	 software	 developer	 would	 know.	 to	
prove	 this	 point,	 cortus	 says	 a	 doctoral	 student	 created	 a	
cryptographic	engine	for	the	apS3	as	an	educational	proj-
ect.	Figure	2	is	a	high-level	diagram	of	the	apS3	coprocessor	
	interface.

one	optional	coprocessor	multiplies	32-bit	integers	in	a	
single	clock	cycle.	Without	it,	a	slower	math	library	handles	
those	 operations.	 another	 optional	 coprocessor	 performs	
32-	and	64-bit	Ieee	floating-point	arithmetic,	which	may	be	
useful	in	some	industrial-control	applications.	Both	copro-
cessors	are	included	with	the	apS3.	although	the	other	pro-
cessors	 in	 this	 comparison	 offer	 32-bit	 integer	 multipliers	
as	 an	 optional	 or	 standard	 feature,	 only	 the	 cortus	 apS3	
includes	an	optional	FpU.

Figure 2. Cortus APS3 coprocessor interface. Important features are
32-bit datapaths (two ports for input operands and one for results)
and a separate interface for fetching instruction opcodes. The APS3
supports as many as 16 coprocessors. Developers implement copro-
cessors in Verilog.

Result

Custom
CoprocessorTag

OpCode

Operand B

Operand A

Cortus APS3
CPU Core

4 itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

the	most	interesting	coprocessor	for	the	apS3	is	a	16-bit	
fixed-point	DSp	that	bears	some	resemblance	to	a	Freescale	
Semiconductor	56000-family	DSp.	When	fabricated	at	0.18	
micron,	 the	 cortus	 DSp	 can	 reach	 200MHz	 and	 perform	
all	 the	 same	 single-cycle	 operations	 as	 a	 32MHz	 Freescale	
56F8000	digital	signal	controller.	(In	other	words,	the	cor-
tus	 DSp	 is	 six	 times	 faster.)	 this	 option	 differentiates	 the	
apS3	from	other	processor	cores	in	this	class.

the	 cpU/DSp	 tool	 chain	 is	 unified.	 Instead	 of	 using	 a	
special	c	compiler	for	the	DSp,	programmers	use	the	cpU’s	
compiler	 to	 call	 DSp	 library	 routines	 or	 to	 write	 in-line	
assembly	 language.	 (cortus	 says	 a	 fast	 Fourier	 transform	
and	other	DSp	algorithms	can	be	written	entirely	in	c.)

Further	customization	is	possible	by	modifying	the	Ver-
ilog	model	of	 the	apS3.	other	cpU	vendors	 strongly	dis-
courage,	or	outright	forbid,	their	licensees	from	doing	this.	
cortus	doesn’t	exactly	encourage	it,	either,	but	it’s	an	option.	
cortus	prefers	to	do	this	level	of	customization	itself,	offer-
ing	design	services	at	extra	cost.	on	demand,	cortus	stands	
ready	 to	 design	 custom	 instructions,	 coprocessors,	 and	
peripherals.	as	 the	 smallest	 cpU	 vendor	 evaluated	 in	 this	
article,	cortus	seems	especially	eager	to	bend	over	backward	
for	customers.

Peripherals Included With CPU
Unlike	 most	 licensable-processor	 vendors,	 cortus	 supplies	
peripheral	 intellectual	 property	 (Ip)	 with	 the	 cpU	 core.	
Usually,	 peripherals	 are	 an	 additional	 expense.	 as	 men-
tioned	 above,	 the	 32-bit	 integer	 multiplier	 and	 32/64-bit	
FpU	are	included	with	the	apS3.

Standard	peripherals	include	a	basic	Uart,	a	JtaG	inter-
face	(Ieee	1149.1	standard),	a	breakpoint	module	(support-
ing	 three	 breakpoints),	 an	 instruction-cache	 controller,	 an	
interrupt	controller,	a	GpIo	controller	(with	up	to	32	bidi-
rectional	I/o	ports),	a	16/32-bit	timer,	a	master/slave	Serial	
peripheral	Interface	(SpI),	an	I2c	module,	USB	1.1,	USB	2.0,	
a	Gigabit	ethernet	controller,	and	generic	memory	control-
lers	for	SraM,	DraM,	and	flash.	all	are	configurable.

together	with	the	cpU,	these	peripherals	are	the	makings	
of	a	respectable	Soc,	as	Figure	3	shows.	the	only	other	ven-
dor	providing	so	much	peripheral	Ip	with	a	32-bit	processor	
core	is	Gaisler	research,	whose	Sparc-compatible	Leon3	
processor	is	too	big	to	compete	in	this	derby.

For	software	development,	cortus	provides	a	GnU-based	
c/c++	compiler	that	runs	on	Linux	or	Windows	and	plugs	
into	the	eclipse	integrated	development	environment	(IDe).	
as	 an	 alternative,	 developers	 can	 buy	 the	 raisonance	 IDe	

Figure 3. Cortus provides many commonly used peripheral-IP blocks with the APS3 processor core. They’re a good start for designing a well-
 integrated SoC, and they save money. No other processor covered in this article comes with so much peripheral IP.

Peripheral Bus

DMA
I/F

Memory
I/F

RAM
I/F

RAM
I/F

DMA
I/F

Instruction
I/F

Breakpoint I/F

APS 3
32-bit CPU

Interrupt
I/F

Peripheral Bus

Memory
I/F

XBarCoprocessor I/F

APS DSP

Memory
I/F

Memory
I/F

Timer 1

Timer 1
Capture

Timer 1
Capture

Timer 1
Capture

Timer 1
Capture

Timer 1
Compare

Interrupt
Controller

Timer 2

Timer 1
Capture

Timer 1
Capture

Timer 2
Capture

Timer 1
Capture

Timer 2
Compare SPI 2I C USB UARTJTAG GPIO

Peripheral
Bridge

External
Mem I/F

BootROM

Y
4K RAM

X
4K RAM

Watchdog
Timer

Breakpoints

Reset

External
Flash

External
RAM

5itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

(rIDe7),	 a	 third-party	 commercial	 product	 for	Windows.	
the	 cortus	 apS3	 instruction-set	 simulator	 is	 nearly	 cycle	
accurate	 and	 can	 model	 cache	 performance	 and	 memory	
wait	states.	Developers	can	also	run	a	100%	cycle-accurate	
hardware/software	 cosimulation	 using	 System	 c,	 which	 is	
much	faster	than	a	Verilog	simulation.

Better	yet,	the	apS3	is	so	small	that	it	runs	handily	in	an	
affordable	FpGa.	For	$99,	Digilent	sells	an	FpGa	develop-
ment	board	with	a	Xilinx	Spartan3	Xc-200.	For	larger	sys-
tem	 designs,	 a	 $150	 Spartan3	 Xc-1000	 is	 roomier.	 cortus	
also	has	a	small	number	of	loaner	100MHz	test	chips	fabri-
cated	at	0.35	micron.

operating-system	 support—the	 achilles	 heel	 of	 small	
cpU	vendors—is	skimpy.	For	now,	Micrium’s	µc/oS-II	 is	
the	only	commercial	option	for	the	cortus	apS3.	Depend-
ing	on	which	modules	a	developer	includes,	this	rtoS	can	
squeeze	into	a	few	kilobytes	of	memory.	one	apS3	customer	
is	 using	 the	 open-source	 FreertoS	 kernel.	 Many	 of	 the	
deeply	 embedded	 systems	 for	 which	 the	apS3	 is	 intended	
don’t	bother	with	an	rtoS	at	all,	because	developers	prefer	
to	run	their	software	on	bare	metal.

XAP5a: Hybrid 16/32-Bit CPU
cambridge	 consultants	 is	 a	 British	 engineering	 firm	
founded	in	1960,	at	the	dawn	of	the	Ic	era.	after	decades	of	
offering	engineering	services,	the	company	began	licensing	
its	first	embedded-processor	core	in	1995	and	its	first	32-bit	
core	in	2005.	More	than	a	billion	of	these	cores	are	in	silicon.	
although	 processor-Ip	 licensing	 isn’t	 the	 company’s	 main	
business,	it	recaptures	some	revenue	lost	to	arM	and	other	
vendors	when	providing	design	services	to	customers.

the	cambridge	consultants	Xap	(“zap”)	architecture	is	
the	foundation	for	a	product	line	of	16-	and	32-bit	proces-
sor	cores.	For	this	article,	we’ll	focus	on	the	Xap5a.	Frankly,	
we	hesitated	 to	 include	 the	Xap5a,	because	 it’s	not	a	 fully	
32-bit	processor.	It’s	a	16/32-bit	hybrid	that	takes	even	more	
liberties	with	classic	32-bit	rISc	principles	 than	the	other	
processors	 in	 this	 comparison.	 Despite	 those	 liberties,	 the	
Xap5a	isn’t	the	smallest	core	of	the	group.	nevertheless,	we	
are	including	the	Xap5a	because	it	may	represent	the	next	
evolutionary	step	for	small	32-bit	processor	cores.

Some	explanation	is	in	order.	the	first	popular	rISc	pro-
cessors	 (such	as	MIpS	and	Sparc)	appeared	 in	 the	1980s	
while	 the	 industry	 was	 advancing	 to	 32-bit	 architectures.	
Because	rISc	was	the	new	wave	in	microprocessor	design,	
early	 rISc	 processors	 embraced	 32	 bits.	 these	 processors	
had	32-bit-wide	datapaths,	32-	×	32-bit	Gprs,	32-bit-long	
instructions,	 32-bit-wide	 I/o	 buses,	 and	 provisions	 for	
32-bit	 memory	 addressing.	 they	 were	 high-performance	
microprocessors	for	workstations	and	servers.

Later,	 as	 rISc	 architectures	 lost	 ground	 to	 the	 x86	 on	
desktops	 and	 in	 server	 closets,	 rISc	 sought	 refuge	 in	 the	
embedded	market.	Developers	welcomed	these	clean,	mod-
ern	architectures,	but	the	high-performance	features	became	
handicaps.	In	response,	rISc	architects	began	economizing	

to	save	gates	in	the	processor	core,	reduce	pins	on	the	chip,	
and	conserve	memory	in	the	system.	It	became	common	to	
see	32-bit	rISc	processors	with	16-bit	 I/o	buses,	 reduced	
memory	addressing,	smaller	register	files,	and	subsets	of	16-
bit	instructions.

arM’s	new	cortex-M0	is	a	good	example	of	this	evolu-
tion.	It	retains	32-bit	datapaths,	32-bit	Gprs,	32-bit	mem-
ory	addressing,	and	a	32-bit	I/o	bus.	However,	like	all	arM	
processors,	it	has	only	16	programmer-visible	registers,	and	
three	of	 those	are	 reserved	 for	 the	program	counter,	 stack	
pointer,	and	link	register.	almost	all	cortex-M0	instructions	
are	16	bits	long—only	six	are	32	bits.	Indeed,	the	cortex-M0	
instruction	set	is	so	condensed	that	it	has	only	one-third	as	
many	instructions	as	the	cortex-M3.

cambridge	consultants	says	the	Xap5a	carries	this	evolu-
tion	(or	devolution,	depending	on	your	point	of	view)	to	the	
next	 logical	 step.	 the	 Xap5a	 has	 32-bit	 internal	 datapaths	
between	its	registers	and	function	units.	otherwise,	it	looks	
more	 like	 a	 16-bit	 processor	 than	 even	 the	 arM	 cortex-
M0	does.	the	Xap5a	has	a	16-bit	 I/o	bus,	16-bit	memory	
addressing,	a	16-bit-wide	stack,	and	only	eight	16-bit	Gprs.	
(Unlike	arM	processors,	however,	the	Xap5a	doesn’t	reserve	
Gprs	for	the	program	counter,	stack	pointer,	and	link	regis-
ter;	it	has	separate	registers	for	those	purposes.)	Most	inter-
nal	datapaths	in	the	Xap5a	are	16	or	24	bits	wide.	arguably,	
the	Xap5a	is	a	16-bit	processor.	However,	it	can	natively	per-
form	32-bit	operations—even	some	wider	operations—with	
complete	transparency	to	high-level	languages.

the	 Xap	 line	 does	 have	 some	 processors	 that	 are	 fully	
32	bits.	at	Spring	processor	Forum	2005,	cambridge	con-
sultants	introduced	the	32-bit	Xap3a,	which	we	covered	in	
detail	shortly	afterward.	(See	MPR 6/13/05-01,	“Xap	takes	
the	Stage.”)	the	 latest	word	 from	 the	company	 is	 that	 the	
Xap3	 family	 will	 be	 dropped.	although	 another	 fully	 32-
bit	 Xap	 design	 is	 contemplated,	 cambridge	 consultants	
says	most	customers	prefer	a	smaller	processor	core	that	can	
natively	 perform	 32-bit	 operations	 without	 the	 overhead	
of	a	fully	32-bit	microarchitecture.	the	16/32-bit	Xap5a	is	
designed	to	meet	those	needs.

32-Bit Sleight-of-Hand
With	 a	 base	 configuration	 of	 18,000	 gates,	 the	 Xap5a	 is	
larger	 than	 the	 cortex-M0	 and	 cortus	 apS3.	 It’s	 slightly	
smaller	 than	 tensilica’s	 106Micro.	 However,	 these	 differ-
ences	 seem	 great	 only	 in	 this	 context.	 Keep	 in	 mind	 that	
all	 these	processors	are	 less	 than	half	 the	 size	of	an	arM-
7tDMI,	long	the	staple	of	small	32-bit	microcontrollers	and	
deeply	embedded	systems.

the	 Xap5a	 can	 natively	 perform	 32-bit	 integer	 opera-
tions	 because	 it	 has	 instructions,	 registers,	 datapaths,	 and	
function	 units	 designed	 for	 that	 purpose.	 Instructions	
that	manipulate	16-bit	operands	have	32-bit	counterparts.	
In	 assembly	 language,	 programmers	 simply	 use	 the	 32-bit	
version.	 For	 high-level	 programming,	 cambridge	 consul-
tants	 has	 modified	 the	 GnU	 c/c++	 compiler	 to	 do	 this	

6 itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

	automatically.	 When	 an	 operation	 manipulates	 a	 32-bit	
integer	variable	or	constant,	 the	compiler	emits	 the	32-bit	
version	of	the	required	instruction.

register	 operations	 use	 similar	 sleight-of-hand.	 the	
Xap5a	has	eight	16-bit-wide	Gprs.	When	an	instruction	has	
a	32-bit	operand,	 it	stores	the	value	in	two	16-bit	registers.	
the	pairing	is	largely	transparent	to	programmers.	In	assem-
bly	 language,	 the	 32-bit	 version	 of	 an	 instruction	 merely	
references	the	source	and	destination	registers	as	any	32-bit	
processor	does.	For	example,	 the	mov.r	 instruction	copies	a	
16-bit	 value	 from	 one	 16-bit	 register	 to	 another.	 Its	 32-bit	
counterpart	is	mov.32.r,	which	copies	a	32-bit	value	from	one	
pair	 of	 16-bit	 registers	 to	 another	 pair.	 the	 GnU	 c/c++	
compiler	automatically	uses	mov.32.r	when	necessary.

With	only	eight	16-bit	Gprs	to	start	with—a	small	regis-
ter	file—the	Xap5a	can	allocate	only	four	register	pairs	for	
32-bit	 integers.	 that’s	 very	 small.	 other	 processors	 in	 this	
category	have	16	Gprs	for	32-bit	values.	a	mitigating	fac-
tor	 is	 that	 the	Xap5a	has	dedicated	24-bit	 registers	 for	 its	
program	counter,	stack	pointers,	vector	pointer,	and	break-
points,	 whereas	 competing	 processors	 conscript	 Gprs	 for	
some	of	those	purposes.

even	so,	 register	congestion	would	 seem	to	be	a	hazard	
for	 the	 Xap5a.	 In	 particular,	 compilers	 aren’t	 as	 adept	 at	

managing	registers	as	experienced	assembly-language	pro-
grammers	are.	But	 the	Xap5a’s	designers	 insist	 that	 regis-
ter	congestion	isn’t	a	problem.	they	agree	with	cortus	that	
open-source	 developers	 have	 spent	 years	 tuning	 the	 GnU	
c/c++	 compiler	 for	 efficient	 register	 management	 on	 a	
variety	of	cpU	architectures.

Small Memory Trumps Small Logic
Figure	4	is	a	block	diagram	of	the	Xap5a.	notice	the	32-bit	
datapaths	connecting	the	registers	and	function	units.	Many	
Xap5a	instructions	use	the	common	form	of	op r0,r1,r2,	in	
which	op	is	the	instruction	mnemonic,	r0	is	the	destination	
register,	and	r1	and	r2	are	input	operands.	the	32-bit	data-
paths	 allow	 function	 units	 to	 shuttle	 32-bit	 operands	 and	
results	to	and	from	the	registers	in	one	clock	cycle.	However,	
the	16-bit	I/o	bus	requires	two	clock	cycles	to	load	or	save	a	
32-bit	value	in	memory.

In	keeping	with	its	frugal	ways,	the	Xap5a	can	save	1-,	8-,	
16-,	or	32-bit	values	anywhere	in	its	byte-addressable	16-bit	
memory.	therefore,	16-	and	32-bit	values	can	be	unaligned	
on	byte	boundaries	(albeit	with	a	one-cycle	access	penalty).	
Software	libraries	support	64-bit	long	integers	and	floating-
point	math.	Versatile	block-move	instructions	can	copy	data	
from	one	byte	address	to	another.

Figure 4. Cambridge Consultants XAP5a block diagram. Gray blocks are user-customizable components. The custom logic unit (CLU) and internal
serial interface (iSIF) are optional. This hybrid 16/32-bit processor is basically a 16-bit architecture, but it has just enough 32-bit features to natively
perform 32-bit integer operations with little or no bother for programmers. However, the 16-bit I/O bus limits throughput when compared with
fully 32-bit processors. Although 24-bit pointers and address registers limit the XAP5a to 16MB of memory, it should be sufficient for deeply embed-
ded applications.

Rs or Ra - opA

16

Rt or Rx

Rd

PC24

#Immediate

Instruction control lines

Interrupt control lines
32

Interrupt and Exception Controller

24

Rd32
Rs

16

Rt

32

24

32

32

16

16

wake_up

16

data_read

ISIF ISIF (internal, parallel)

xSIF (external, serial)

clk

reset_xap

reset_sif

force_stop

Interrupts

24

16

data_write

address

CLU

op6
M
U
X

Rd

16
M
U
X

Clocks
Resets

MMU
(1 of 2)

SIF
Serial Debug Interface

16

16 or
32 or
48Instruction

Fetch

24

Instruction
Decode

ALU

M
U
X

24

24

Address
Generator

M
U
X

MMU
(2 of 2)

XAP peripheral - customized
for each application

XAP core - fixed

IVC

Address (24 bit)
PC, SP0, SP1, VP

Normal (16 bit)
R0-R7

Registers

Breakpoint (24 bit)
BRK0-BRK3

Special (16 bit)
FLAGS, INFO, BRKE

7itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

note	 that	 some	 “32-bit”	 operations	 actually	 are	 mixed	
16/32-bit	operations,	producing	a	16-bit	result.	For	instance,	
the	hardware	divider	applies	a	16-bit	divisor	to	a	32-bit	divi-
dend	and	yields	a	16-bit	quotient,	possibly	resulting	in	loss	
of	precision	when	compared	with	a	full	32-bit	division.	(It’s	
relatively	fast—unsigned	divides	require	18	clock	cycles,	and	
signed	divides	require	20	cycles.)

When	the	Xap5a	stores	an	address	or	pointer	in	memory	
or	a	Gpr,	the	24-bit	value	automatically	sign-extends	to	32	
bits.	 cambridge	 consultants	 says	 it	 will	 be	 easy	 to	 design	
an	enhanced	version	of	the	processor	with	full	32-bit	mem-
ory	addressing,	should	demand	warrant	it.	currently,	most	
Xap5a	customers	use	only	100KB	to	2MB	of	memory.

Memory	 conservation	 is	 the	 prime	 philosophy	 of	 the	
Xap5a.	 cambridge	 consultants	 says	 that	 in	 a	 compact	
embedded	 system,	 small	 memory	 is	 more	 important	 than	
small	 logic.	 Developers	 should	 compare	 the	 memory	
requirements	 of	 competing	 processors	 instead	 of	 focusing	
on	gate	 counts.	Memory,	not	 logic,	 tends	 to	dominate	 the	
die	of	an	aSIc	or	Soc.	a	processor	that	uses	16-bit	memory	
and	is	designed	around	16-bit	data	needs	less	memory	than	
a	processor	oriented	around	32-bit	memory	and	32-bit	data.	
as	an	example,	cambridge	consultants	cites	a	Xap5a-based	
medical	chip	designed	for	human	implantation.	raM	occu-
pies	57.6%	of	the	die,	roM	occupies	35.6%,	and	the	proces-
sor	occupies	only	6.8%.

In	addition	to	conserving	silicon,	a	small	design	can	save	
energy	if	it	runs	slowly	and	executes	programs	directly	from	
nonvolatile	 flash	 memory	 that’s	 powered	 down	 between	
events.	processors	running	at	high	clock	speeds	must	copy	
the	 program	 and	 data	 from	 nonvolatile	 storage	 to	 raM	
before	responding.	cambridge	consultants	asserts	that	fast	
32-bit	processors	aren’t	the	best	solution	for	small	embed-
ded	 systems,	 even	 if	 those	 processors	 are	 smaller	 than	 the	
Xap5a.	 of	 course,	 this	 argument	 assumes	 the	 application	
doesn’t	 require	 a	 preponderance	 of	 32-bit	 data	 processing	
with	high	throughput.

Customizable Instruction Set
a	surprising	feature	of	the	Xap5a	is	that	developers	can	cre-
ate	their	own	application-specific	instructions.	the	Xap5a	
has	a	special	function	unit	for	this	purpose:	the	custom	logic	
unit	 (cLU).	 It’s	 visible	 as	 an	 optional	 component	 in	 the	
Xap5a	block	diagram,	near	the	aLU	(Figure	4).

essentially,	 the	 cLU	 is	 a	 tightly	 coupled	 coprocessor.	
thanks	to	tight	integration,	custom	instructions	can	access	
the	Xap5a’s	Gprs	as	readily	as	aLU	instructions	can.	Usu-
ally,	coprocessors	have	their	own	registers	and	exchange	data	
with	the	cpU	via	load	and	store	operations.	(as	described	
above,	the	cortus	apS3	is	another	exception	to	this	rule—
its	optional	coprocessors	enjoy	equal	access	to	Gprs,	too.)

cambridge	 consultants	 has	 predefined	 15	 template	
instructions	 that	developers	 can	customize.	all	 are	32	 bits	
long	and	have	an	undefined	13-bit	immediate	value,	which	
developers	 can	 use	 for	 any	 purpose.	all	 are	 recognized	 by	

the	assembler	and	GnU	c/c++	compiler.	one	of	these	tem-
plate	 instructions	 operates	 on	 an	 immediate	 value	 alone.	
the	others	can	access	one,	two,	or	three	registers	as	well	as	
an	immediate	value.

to	 define	 custom	 instructions,	 developers	 must	 get	
their	 hands	 dirty	 in	Verilog.	 there’s	 no	 high-level	 design-
	automation	 tool	 like	 those	 available	 for	 the	 customizable	
processors	 from	 arc	 International,	 MIpS	 technologies,	
and	tensilica.	arc	and	tensilica	have	the	best	tools	in	this	
field.	 However,	 tensilica’s	 entry	 in	 this	 flyweight	 class	 of	
	processors—the	 Diamond	 Standard	 106Micro—is	 a	 pre-
configured	 core	 that	 rules	 out	 additional	 instruction-set	
customization.	the	arc	605	is	configurable,	but	at	30,000	
gates	 for	 the	 base	 configuration,	 it	 would	 be	 the	 heaviest	
core	if	included	in	this	group.

the	 option	 to	 create	 custom	 instructions	 partly	 com-
pensates	 for	 the	 Xap5a’s	 16-bit	 deficiencies.	 application-
	specific	instructions	can	accelerate	critical	tasks	much	more	
efficiently	 than	 simply	 cranking	 up	 the	 processor’s	 clock	
speed.	of	course,	the	additional	logic	also	inflates	the	core.	
overindulgence	in	this	feature	could	push	the	Xap5a	out	of	
consideration,	if	core	size	matters.

XAP5a Has Privileged Execution
two	more	important	features	are	the	Xap5a’s	privileged	exe-
cution	modes	and	user-configurable	memory-management	
unit	(MMU).	these	features	work	together	to	give	develop-
ers	control	over	software	execution	in	mission-critical	and	
security-conscious	applications.	privileged	execution	is	built	
into	the	core	and	supports	a	supervisor	mode,	user	mode,	
and	trusted	mode.

the	MMU	isn’t	a	full-fledged	memory	manager	capable	
of	addressing	virtual	memory.	However,	it	can	trigger	excep-
tions	if	a	program	tries	to	access	regions	of	memory	that	are	
off	 limits.	 the	 MMU	 can	 throw	 four	 different	 exceptions,	
including	two	that	signal	when	a	user	program	attempts	to	
access	 instructions	 or	 data	 outside	 its	 restricted	 memory	
region.	exceptions	trigger	a	context	switch	that	calls	a	han-
dler	 routine.	 this	 feature	 allows	 developers	 to	 supervise	
user-level	 processes	 and	 protect	 multiple	 user	 tasks	 from	
each	other.

one	 competing	 processor,	 tensilica’s	 106Micro,	 has	 a	
similar	memory-protection	unit	but	no	privileged-execution	
modes.	the	106Micro	can	reserve	multiple	regions	of	mem-
ory	for	different	programs.	Unauthorized	attempts	to	access	
a	protected	region	will	trigger	an	exception.

revealing	 its	 16-bit	 heritage	 again,	 the	 Xap5a	 has	 the	
shortest	 pipeline	 of	 all	 the	 processors	 in	 this	 group.	 With	
only	two	stages—barely	a	pipeline	at	all—the	Xap5a	strains	
to	reach	a	maximum	worst-case	clock	frequency	of	175MHz	
when	 fabricated	 in	 a	 generic	 90nm	 cMoS	 process.	 even	
the	 three-stage	arM	cortex-M0	can	hit	270MHz	or	 so	at	
that	node.	the	cortus	apS3	and	tensilica	106Micro	are	the	
speed	demons	in	this	class.	thanks	to	their	five-	or	seven-
stage	pipelines,	they	can	hit	300–400MHz	at	90nm.

8 itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

the	Xap5a’s	lower	headroom	for	clock	frequency	is	worse	
than	it	seems.	With	a	16-bit	I/o	bus—every	other	processor	
in	this	group	has	a	32-bit	bus—the	Xap5a	requires	two	clock	
cycles	to	load	or	save	a	32-bit	value.	In	comparison	with	the	
other	processors,	the	Xap5a’s	narrower	bus	halves	the	effec-
tive	bus	frequency	when	loading	or	saving	32-bit	data.	also,	
many	of	the	Xap5a’s	206	instructions	are	32	bits	or	48	bits	
long.	(the	32-bit	instructions	contain	16-bit	immediate	val-
ues,	and	the	48-bit	instructions	contain	24-	or	32-bit	imme-
diates.)	the	bus	must	 labor	 for	 two	or	 three	cycles	 just	 to	
load	one	of	these	 instructions.	In	contrast,	 the	fully	32-bit	
cortex-M0	has	a	largely	16-bit	instruction	set—only	six	of	
its	58	instructions	are	32	bits	long.

no	 worries,	 says	 cambridge	 consultants.	 the	 Xap5a	 is	
designed	for	embedded	applications	that	mainly	use	16-bit	
data,	plus	a	few	32-bit	operations.	as	a	controller,	the	Xap5a	
will	stay	busy	crunching	data	from	an	analog-to-digital	con-
verter	 (aDc)	 whose	 resolution	 is	 typically	 16	 bits	 or	 less.	
example	applications	include	Bluetooth	wireless	radios,	Zig-
bee	wireless	controllers,	smart	utility	meters,	touch	screens,	
heart	pacemakers,	hearing	aids,	and	similar	embedded	sys-
tems.	an	8-	or	16-bit	processor	may	not	have	enough	mem-
ory	 or	 throughput	 for	 these	 systems,	 especially	 if	 it	 must	
perform	 32-bit	 operations	 often	 enough	 to	 tax	 a	 software	
library.	Hence	the	16/32-bit	Xap5a.

It’s	 a	 sound	 argument.	 nevertheless,	 the	 16-bit	 aspects	
of	 the	Xap5a	make	 it	 the	 slowest	processor	 in	 this	group.	
as	measured	by	the	dubious	but	ubiquitous	Dhrystone	2.1	
benchmark,	the	Xap5a	executes	0.68Dmips	per	megahertz.	
the	 cortus	apS3	 manages	 0.88Dmips	 per	 megahertz	 and	
can	 reach	 much	 higher	 clock	 speeds	 in	 the	 same	 fabrica-
tion	 process.	 arM	 rates	 the	 cortex-M0	 at	 0.9Dmips	 per	
megahertz,	 and	tensilica	pegs	 the	106Micro	at	1.22Dmips	
per	 megahertz.	 Both	 processors	 have	 much	 greater	 clock-
	frequency	headroom	than	the	Xap5a.

In	 power	 efficiency,	 the	 Xap5a	 fares	 a	 little	 better.	 at	
175MHz,	it	achieves	27.2Dmips	per	milliwatt.	In	compari-
son,	the	106Micro	delivers	23–28Dmips/mW	and	the	apS3	
delivers	36.6Dmips/mW.	the	cortex-M0	handily	beats	them	
all	with	60Dmips/mW.	overall,	the	most	attractive	features	
of	the	Xap5a	are	customizable	instructions,	privileged	exe-
cution,	and	compact	16-bit	memory.

Tensilica’s Mighty Mouse
although	 tensilica	 is	 famous	 for	 its	 user-customizable	
Xtensa	 processor	 cores,	 its	 entry	 into	 this	 class	 is	 the	 pre-
configured	 Diamond	 Standard	 106Micro.	 It’s	 a	 factory-
	configured	derivative	of	the	Xtensa	7	core,	ready	for	deeply	
embedded	 applications	 out	 of	 the	 box.	 tensilica	 recently	
added	the	106Micro	to	the	Diamond	Standard	series	intro-
duced	 three	 years	 ago.	 (See	 MPR 3/29/06-01,	 “tensilica’s	
preconfigured	 cores,”	 and	 MPR 12/4/06-02,	 “tensilica	
Upgrades	Xtensa	cores.”)

Several	features	set	the	106Micro	apart	from	the	other	pro-
cessors	considered	here.	First,	 it	has	an	unusually	memory-
efficient	 instruction	 set,	 because	 the	 standard	 instruction	
length	is	24	bits	instead	of	32	bits.	It	also	has	the	usual	sub-
set	of	16-bit	instructions.	Datapaths	and	registers	are	32	bits	
wide,	so	the	106Micro	is	a	true	32-bit	processor,	but	its	24-
bit	instructions	require	25%	less	memory	than	conventional	
rISc	 instructions.	 even	 so,	 the	 arM	 cortex-M0	 is	 hard	
to	 beat	 in	 this	 category,	 because	 its	 instruction	 set	 consists	
almost	entirely	of	16-bit	thumb	and	thumb-2	instructions.

the	 second	 standout	 feature	 of	 the	 106Micro	 is	 its	
	memory-protection	unit.	It’s	not	a	full-fledged	MMU,	so	it	
doesn’t	support	virtual	memory.	nor	does	it	support	privi-
leged	execution,	as	the	Xap5a	does.	However,	the	106Micro	
does	 allow	 developers	 to	 rope	 off	 regions	 of	 memory	 to	
provide	 some	 protection	 for	 vital	 tasks.	 In	 addition,	 the	
106Micro	 has	 a	 Harvard	 memory	 interface,	 which	 segre-

gates	instructions	and	data.
third,	 the	 106Micro’s	 20,000-gate	 core	 includes	

features	 that	 are	 optional	 or	 external	 components	
for	most	other	cores.	It	has	a	32-bit	multiplier,	a	16-
bit	timer,	an	interrupt	controller,	and	on-chip	debug	
logic	with	 JtaG	and	 trace	ports.	adding	 these	 fea-
tures	to	some	of	the	other	cores	would	inflate	their	
nominally	lower	gate	counts.

Fewer Interrupts, But Enough
tensilica	 cut	 some	 corners	 to	 keep	 the	 106Micro	
small.	 the	 32-bit	 multiplier	 is	 relatively	 slow,	 and	
the	 interrupt	 controller	 isn’t	 as	 good	 as	 those	 in	
competing	processors.	It	supports	only	15	interrupt	
lines	and	two	priority	 levels—the	other	processors	
have	at	 least	 twice	as	many.	For	most	applications,	
that’s	not	a	handicap.	Figure	5	is	a	block	diagram	of	
the	106Micro.

thanks	 to	 its	 relatively	 deep	 five-stage	 pipeline,	
the	 106Micro	 is	 probably	 the	 swiftest	 processor	 in	

Figure 5. Tensilica Diamond Standard 106Micro block diagram. The 106Micro is a
preconfigured version of the Xtensa 7 microarchitecture, introduced in 2006. Its 16-
entry register file and 16/24-bit instruction set help keep this 32-bit core small. Yet it
retains a 32- × 32-bit multiplier, integrated debug logic, and a Harvard memory inter-
face. Tightly coupled instruction and data memories can be as large as 128KB each.
An external bus bridge connects Tensilica’s Processor Interface (PIF) to an industry-
standard AMBA or AXI interface. Tensilica offers free IP for an AHB-Lite bus.

Interrupts

D-RAM

I-RAM

Trace

JTAG PIF

32 32

AMBA
AHB-Lite or

AXILoad/StoreTrace Port

I-Fetch/Decode

32x32 MULOn-Chip Debug

32-bit ALU,
Barrel Shifter

Timers

Interrupt Unit 16x32b Reg File

Sy
st

em
 In

te
rf

ac
e

Br
id

ge

Included in core area

External to core area

9itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

this	 group.	 It	 can	 reach	 a	 maximum	 worst-case	 clock	 fre-
quency	of	400MHz	in	a	speed-optimized	90nm-G	process.	
the	next-fastest	processor	is	the	cortus	apS3,	which	reaches	
300MHz	in	a	slower	130nm-G	process.	(Direct	comparisons	
are	 hampered,	 because	 cortus	 customers	 have	 taped	 out	
designs	at	130nm,	65nm,	and	45nm,	but	not	at	90nm.)

the	106Micro	delivers	the	best	throughput,	too,	as	mea-
sured	 by	 Dhrystone:	 1.22Dmips	 per	 megahertz.	 there-
fore,	 its	 power/performance	 efficiency	 is	 relatively	 high:	
23–28Dmips/mW,	depending	on	the	synthesis	optimization	
and	target	fabrication	process.

a	final	consideration	is	that	tensilica	provides	a	bus	bridge	
that	adapts	its	proprietary	Xtensa	processor	Interface	(pIF)	
to	the	de	facto	standard	aMBa	aHB-Lite	or	aXI	interfaces.	

It’s	easy	to	drop	the	106Micro	into	an	Soc	design	for	inte-
gration	 with	 widely	 available	 peripheral	 cores.	 However,	
tensilica’s	aHB-Lite	bridge	isn’t	counted	in	the	106Micro’s	
20,000	gates.	arM	does	count	a	32-bit	aHB-Lite	 interface	
in	the	12,000-gate	base	configuration	of	the	cortex-M0.

Size Matters, But Not Much
table	 1	 summarizes	 the	 world’s	 smallest	 32-bit	 licensable	
processor	 cores.	 additional	 candidates	 might	 be	 the	 arc	
605	 (30,000	 gates)	 and	 MIpS	 M4K	 (37,500	 gates).	 their	
gate	 counts	 are	 somewhat	 higher	 while	 still	 undercutting	
the	 arM7tDMI.	 However,	 arc	 and	 MIpS	 aren’t	 pursu-
ing	the	8/16-bit	replacement	market	as	aggressively	as	arM,	
cortus,	cambridge	consultants,	and	tensilica.	We	included	

Feature
ARM

Cortex-M0
Cambridge

XAP5a
Cortus
APS3

Tensilica
106Micro

CPU Architecture ARMv6-M XAP5 Cortus APS Xtensa 7

Architecture Width 32 bits 16 / 32 bits 32 bits 32 bits

Configurable ISA — Yes Yes (via coprocessors) Preconfigured

Instruction Lengths 16, 32 bits 16, 32, 48 bits 16, 32 bits 16, 24 bits

Instruction Pipeline 3 stages 2 stages 5–7 stages 5 stages

General-Purpose
Registers

16 x 32 bits*
8 x 16 bits

(4 x 32 bits)
16 x 32 bits 16 x 32 bits

L1 Cache (I / D) — — I-cache 0KB–2MB —

Instr. RAM (Local) — — — 0–128K

Data RAM (Local) — — — 0–128K

32-Bit Multiplier 2 options Yes Optional Yes

32-Bit Divider — 32 → 16 bits — —

Memory Space 4GB 16MB 4GB 4GB

Memory Architecture von Neumann von Neumann Harvard or von Neumann Harvard

Memory
Management

—
Memory-protection

unit
—

Memory-protection
unit

System
Interface

1 x AHB-Lite
32 bits

Native
1 x 16 bits

Native 1 x 32 or 2 x 32 bits†
+ 32-bit coprocessor I/F

Xtensa 32-bit PIF
AHB-Lite / AXI bridge

External Interrupts
1–32

4 priorities
32

4 or 16 priorities
Up to 256

16 priorities
15

2 priorities

Nonmaskable Int. Yes Yes Yes Yes

Debug Module Yes Yes Yes Yes

Core Freq (Max)
(IC Process)

~270MHz
(90nm G)

175MHz
(90nm G)

>300MHz
(130nm G)

400MHz
(90nm G)

Core Size (Base) 12k gates 18k gates 9.5k gates 20k gates

Dhrystone 2.1 0.9Dmips / MHz 0.68Dmips / MHz 0.88Dmips / MHz 1.22Dmips / MHz

Power (Typical)
(IC Process)

0.015mW / MHz
(90nm G)

0.025mW / MHz
(90nm G)

0.024mW / MHz
(130nm G)

0.044–0.054mW / MHz
(90nm G)

Power Efficiency 60Dmips / mW 27.2Dmips / mW 36.6Dmips / mW 23–28Dmips / mW

Table 1. Feature comparison of the ARM Cortex-M0, Cambridge Consultants XAP5a, Cortus APS3, and Tensilica Diamond Standard
106Micro. As usual with comparison tables of this sort, be wary of the power-consumption and performance specifications. MPR obtained
the data from vendors, whose engineers measured the performance of their products under varying conditions. Gate counts are also variable.
Real-world results depend on such factors as the core configuration, synthesis optimization, cell library, layout, and fabrication process. *Three
of ARM’s GPRs are reserved for the program counter, stack pointer, and link register. †AHB-Lite and APB are optional for the Cortus APS3.

10 itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

In the Middle Ages, philosophers reputedly debated the
number of angels that could dance on the head of a pin.
Today, engineers—and, more often, marketing managers—
debate the number of logic gates in their processor cores.
Both debates have no end, unless everyone agrees on the
same terms.

In days of old, when technicians carved logic gates into
sheets of rubylith with X-Acto knives, it was actually possible
to count gates with some certainty. Today, the design pro-
cess is much more abstract and automated. CPU architects
create a model of the processor in a hardware-abstraction
language, such as Verilog, then use a logic synthesizer such
as Synopsys Design Compiler to generate a lower-level ren-
dering. Later, highly automated place-and-route tools gen-
erate the layout. True gate-level design is reserved for a few
critical paths or abandoned altogether.

Gate counts are a rough way of expressing the size of a
microprocessor core independently of the fabrication pro-
cess used to manufacture the chip. Silicon area, not gates,
is what really matters. But the silicon area required for a

processor core depends on numerous factors, not least the
chip-fabrication process. To ease comparisons among dif-
ferent fabrication processes, CPU vendors often state the
core’s “gate count.” But this gate count is a further abstrac-
tion that also depends on several factors.

First: what kind of gate is the vendor counting? Synthesis
compilers have lots of flexibility when implementing logic.
They use all types of gates available in the cell library for
the target fabrication process. Counting those gates would
yield an accurate number, but only for processors synthe-
sized under the same conditions.

To derive a process-independent gate count, CPU ven-
dors typically divide the silicon area of the processor core by
the area required for a single “NAND2-equivalent” gate.
Theoretically, the compiler could synthesize any design
using only NAND2 gates and inverters, though it would
be very inefficient. The convention of counting NAND2-
equivalent gates is purely an abstraction to make compari-
sons easier. But even this abstraction is subject to debate,
because there are different subtypes of NAND2 gates that
vary in size.

For example, Cortus says one configuration of its APS3
processor core requires about 9,500 gates in a 0.35-micron
fabrication process. Another configuration of the APS3 in
this process requires about 10,200 gates. For both esti-
mates, Cortus assumes a mid-size NAND2 gate. In contrast,
Cambridge Consultants says its estimate of 18,000 gates for
the XAP5a processor assumes the smallest type of NAND2
gate (NAND2x1 in TSMC nomenclature), which yields the
highest theoretical gate count. If Cortus assumed an equally
small NAND2 gate for its estimates, the gate counts for the
APS3 would be higher.

Even when assuming the same type of NAND2 gates,
the count can vary widely in different fabrication processes
and when the processor is synthesized for different perfor-
mance targets. The accompanying table shows the variabil-
ity of gate counts for the APS3. The same principles apply
to all synthesizable processors.

In this article, Microprocessor Report quotes gate counts
from the CPU vendors. Your mileage may vary. Vendors can
fudge these numbers by tinkering with the configurations
of their processor cores, synthesizing the logic for different
performance targets, and basing the count on different-
size NAND2 gates. However, overindulging in these tricks
would risk spoiling a customer relationship forged on an
unrealistic gate count. Our advice is to treat the vendor’s
gate count as a first approximation. For more data, consult
the vendor. All the processors covered in this article are so
small and so close in size that gate counts shouldn’t be the
deciding factor.

G a t e C o u n t ? D e p e n d s W h o ’s C o u n t i n g

Process
Technology

NAND2
Gates

Silicon
Area

Clock
Frequency

AMS C35
0.35 Micron
(Typical)

10,182 1.11mm2 100MHz

TSMC 18G
0.18 Micron
(Typical)

9,939 0.17mm2 33MHz

TSMC 18G
0.18 Micron
(Slow)

14,635 0.24mm2 200MHz

TSMC 13G
0.13 Micron
(Typical)

7,051 0.08mm2 33MHz

TSMC 13G
0.13 Micron
(Typical)

12,303 0.15mm2 150MHz

TSMC 65GP-LV
65nm
(Slow)

8,276 0.04mm2 520MHz

Xilinx FPGA
Virtex-5

1,048
slices

n/a 110MHz

Table 2. Estimated gate counts when implementing the Cor-
tus APS3 processor core in different fabrication processes.
These are “NAND2-equivalent” estimates and assume a
midsize NAND2 gate, not the smallest possible NAND2 gate.
Note that even when the fabrication process and gate type are
constant—as in the TSMC 13G example—the estimated gate
counts can vary widely, depending on whether synthesis was
optimized for speed or area.

11itty-Bitty	32-Bitters

	 © 	 I n - S t a t 	 M a y 	 1 1 , 	 2 0 0 9 	 M I c r o p r o c e S S o r 	 r e p o r t

To subscribe to Microprocessor	report, phone 480.483.4441 or visit www.Mpronline.com

the	arc	605	and	MIpS	M4K	in	our	recent	coverage	of	the	
arM	 cortex-M0.	 (See	 MPR 3/2/09-01,	 “arM’s	 Smallest	
thumb.”)

Ironically,	 core	 size	 may	 be	 the	 least	 important	 factor	
when	choosing	among	these	processors.	all	are	so	tiny	that	
their	size	differences	tend	to	sift	out	in	the	mix.	all	are	signif-
icantly	smaller	than	an	arM7tDMI,	heretofore	the	default	
choice	when	upgrading	from	8	or	16	bits.	When	equipped	
with	 approximately	 equivalent	 features,	 the	 arM	 cortex-
M0	and	cortus	apS3	look	like	the	smallest	of	the	small,	fol-
lowed	closely	by	tensilica’s	106Micro	and	cambridge	con-
sultants	Xap5a.	all	are	microscopic,	so	features	other	than	
gate	counts	loom	larger.

If	 privileged	 execution	 or	 memory	 protection	 matters,	
the	 Xap5a	 and	 106Micro	 emerge	 from	 the	 pack.	 For	 raw	
speed,	the	deeper-pipelined	apS3	and	106Micro	deliver	the	
goods.	For	cost,	we	deem	cambridge	consultants,	cortus,	
and	 tensilica	 to	 be	 more	 open	 to	 negotiation	 on	 licens-
ing	 fees	 and	 royalties	 than	 industry	 leader	arM—though	
tough	times	soften	the	heart	of	many	a	sales	rep.	cortus	is	
notable	 for	 including	 valuable	 peripheral	 Ip	 with	 its	 cpU	
license.	 arM’s	 cortex-M0	 base	 configuration	 includes	 an	
interrupt	 controller	 (an	 included	 but	 external	 component	
for	 the	 cortus	apS3)	 and	 an	aHB-Lite	 bus	 (not	 included	
with	the	apS3).	tensilica	offers	a	free	aHB-Lite	bus	for	the	
106Micro.

For	the	best	selection	of	development	tools	and	operating	
systems,	arM	 is	 the	 obvious	 choice.	 But	 even	 though	 the	
cortex-M0	is	well	 supported,	 its	mostly	16-bit	 instruction	
set	isn’t	compatible	with	the	larger	catalog	of	tools	and	soft-
ware	offered	for	other	32-bit	arM	processors.	the	106Micro	
runs	closely	behind	arM	in	this	category,	because	it’s	soft-
ware-compatible	 with	 tensilica’s	 Xtensa	 architecture	 and	
existing	tool	chain.	It	will	run	the	same	operating	systems	as	
other	Xtensa	processors.	cambridge	consultants	and	cor-
tus	have	somewhat	less	support,	especially	from	third	par-
ties,	though	raisonance	rIDe7	is	an	option	for	the	apS3.

power	 consumption,	 usually	 a	 vital	 factor	 in	 small	
embedded	systems,	probably	won’t	drive	the	decision	in	this	

case.	all	these	cores	are	tiny	and	approximately	equal	in	size.	
all	will	probably	lose	more	energy	to	static	leakage	than	to	
dynamic	switching.	all	have	power	specifications	measured	
by	their	vendors	under	varying	conditions	and	unverified	by	
an	 independent	party.	as	 soft	 cores,	 all	 are	heavily	depen-
dent	on	synthesis	optimizations	and	 fabrication	processes.	
With	 one	 important	 exception,	 there’s	 little	 to	 distinguish	
these	cores	with	regard	to	power.

that	exception	is	a	feature	of	the	cortex-M0.	If	develop-
ers	implement	this	core	in	an	ultralow-leakage	0.18-micron	
process	 with	 an	 arM	 power-management	 kit	 and	 cell	
library,	the	cortex-M0	can	enter	a	special	deep-sleep	mode.	
the	 processor	 can	 stop	 its	 clock	 and	 shut	 down	 the	 main	
power	 rail,	 drawing	 less	 than	 50	 nanoamps	 while	 asleep.	
yet	 wakeup	 is	 almost	 instantaneous,	 because	 a	 separate	
low-power	domain	preserves	the	processor’s	registers.	(We	
described	this	feature	in	detail	in	our	report	on	the	cortex-
M0.)	 cortus	 says	 an	 apS3	 customer	 has	 implemented	 a	
similar	 stop-clock	 and	 power-down	 sleep	 mode,	 but	 it’s	 a	
custom	design.

So	those	are	the	tradeoffs.	When	an	8-	or	16-bit	engine	
runs	out	of	gas,	any	of	these	32-bit	subcompacts	will	carry	a	
project	across	the	finish	line.	

P r i c e & Av a i l a b i l i t y

All the processor cores described in this article
are available for licensing now. Vendors don’t pub-
licize their up-front licensing fees and royalties—
which, in any case, are probably more negotiable
now than ever. For more information, visit these
vendor websites:
www.arm.com/products/CPUs/ARM-Cortex-M0.html
www.cambridgeconsultants.com/xap
www.cortus.com/index.php?page=products
www.tensilica.com/products/diamond/di_106micro.

