
	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

reportM I C R O P R O C E S S O R
www.MPRonline.com

	 	T h e 	 i n s i d e R ’ s 	 g u i d e 	 T o 	 M i c R o P R o c e s s o R 	 h a R d w a R e 	

Looking Beyond graphics
Nvidia’s New GPU Architecture Energizes High-Performance Computing

By Tom R. Halfhi l l {10/05/09-01}

a	typical	pc	has	at	least	three	cooling	fans...and	one	case	heater.	that	“heater”	would	be	the	

graphics-processing	unit	(GpU)—usually	a	separate,	highly	specialized	coprocessor	dedicated	

to	graphics.	It	does	a	brilliant	job	when	the	pc	is	running	a	graphics-intensive	game	or	playing	

a	video.	at	other	times,	 it’s	 largely	underutilized,	radiating	
unused	power	as	heat.

In	 fact,	 a	 discrete	 GpU	 is	 the	 most	 underutilized	 com-
ponent	 in	 a	 pc.	 although	 it’s	 capable	 of	 amazing	 things,	
it	 spends	much	of	 its	 time	performing	routine	chores	 like	
scrolling	the	screen.	Yet	it	has	the	potential	to	be	the	swiftest	
processing	engine	in	the	system—and	it’s	already	there,	just	
waiting	for	something	to	do.

For	four	years,	nvidia	has	waged	a	campaign	to	redefine	
the	role	of	GpUs.	not	that	graphics	aren’t	important.	push-
ing	 pixels	 has	 been	 good	 business	 for	 nvidia,	 the	 world’s	
leading	graphics-processor	company.	Since	the	early	1990s,	
nvidia’s	GpUs	have	offloaded	most	of	the	graphics	process-
ing	from	cpUs	in	millions	of	personal	computers	and	video-
game	 machines.	 nvidia	 continues	 to	 design	 its	 GpUs	 for	
superb	graphics	performance.

Since	2005,	however,	nvidia	has	cultivated	another	fast-
growing	market—GpUs	for	computing	applications	beyond	
graphics.	 at	 first,	 this	 was	 called	 “general-purpose	 GpU”	
(GpGpU)	computing.	today,	nvidia	calls	it	GpU	comput-
ing.	In	the	professional	market,	it’s	called	high-performance	
computing	(Hpc).

by	harnessing	the	massively	parallel-processing	resources	
originally	designed	for	3D	graphics,	clever	programmers	can	
apply	GpUs	to	a	much	broader	range	of	computing	 tasks.	
Some	of	those	tasks,	such	as	video	transcoding,	still	involve	
graphics	 to	 some	degree.	Whereas	a	cpU	might	 spend	an	
hour	or	more	converting	a	recorded	video	for	uploading	to	

Youtube	or	burning	a	DVD,	a	GpU	can	tear	through	the	job	
in	minutes.	the	GpU	can	also	enhance	the	video	frame-by-
frame,	 using	 consumer	 versions	 of	 sophisticated	 software	
once	available	only	to	naSa,	law-enforcement	agencies,	and	
surveillance	experts.

Other	 GpU-computing	 applications	 are	 data-intensive	
tasks	having	little	or	nothing	to	do	with	graphics.	examples	
are	seismic-reflection	analysis	for	oil	exploration	and	finan-
cial	analysis	for	market	trading.	(Using	a	cluster	of	nvidia	
GpUs,	 bloomberg	 recently	 speeded	 up	 its	 custom	 bond-
pricing	 software	 by	 800%.)	 additional	 examples,	 such	 as	
medical	 imaging,	 combine	 high-resolution	 graphics	 with	
heavy-duty	number	crunching.

On	these	kinds	of	workloads,	an	ordinary	GpU	can	blow	
away	the	latest	multicore	cpUs.	Link	several	GpUs	together	in	
a	workstation	or	a	cluster	of	systems,	and	you’ve	got	a	“desktop	
supercomputer”—a	brute-force	number-crunching	machine	
at	a	fraction	of	the	price	and	operating	costs	of	a	room-size	
supercomputer.	 amaX	 Information	 technologies,	 a	 U.S.	
company,	recently	built	an	nvidia-based	cluster	for	the	col-
lege	of	Ocean	and	earth	Science	at	tongji	University	in	china.	
the	cluster	will	be	used	for	geophysics	and	seismology.

Originally,	nvidia	used	the	term	compute	Unified	Device	
architecture	 (cUDa)	 to	 describe	 its	 GpU-computing	 plat-
form.	(See	MPR 1/28/08-01,	“parallel	processing	With	cUDa.”)	
Later,	cUDa	became	a	blanket	term	for	nvidia’s	GpU	archi-
tecture,	run-time	platform,	and	software-development	tools.	
now	nvidia	is	raising	the	bar.

2 Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

nvidia’s	next-generation	GpU	architecture,	code-named	
Fermi,	adds	powerful	new	features	for	cUDa	general-pur-
pose	computing.	Fermi	processors	will	continue	to	shoulder	
the	graphics	workloads	in	pcs	and	videogame	consoles,	but	
they	are	taking	the	largest	step	yet	toward	becoming	equal-
partner	coprocessors	with	cpUs.

New Features for GPU Computing
On	September	30,	at	its	GpU	technology	conference	in	San	
Jose,	california,	nvidia	demonstrated	the	first	silicon	of	a	
chip	 based	 on	 the	 Fermi	 architecture.	 If	 the	 project	 pro-
ceeds	 on	 schedule,	 Fermi	 GpUs	 could	 hit	 the	 market	 this	
year.	Here’s	a	summary	of	the	improvements:
•	 error-correction	 codes	 (ecc)	 protect	 the	 external	

Dram,	L1	data	caches,	L2	cache,	and	register	files.	ecc	
is	unimportant	 for	graphics	but	vital	 for	 financial	 cus-
tomers	and	others	running	mission-critical	software.	no	
other	GpU	has	ecc.

•	 Fermi-class	GpUs	can	perform	double-precision	floating-
point	math	up	to	eight	times	faster	than	existing	nvidia	
GpUs.	Double	precision	is	now	exactly	half	the	speed	of	
single	 precision.	 a	 new	 fused	 multiply-add	 instruction	
improves	precision	and	conforms	to	the	latest	Ieee	754-
2008	floating-point	specification.

•	 the	 memory-address	 space	 (both	 virtual	 and	 physical)	
has	been	unified	and	expanded	from	4Gb	to	one	terabyte	
(1tb),	vastly	increasing	the	capacity	for	large	data	sets.

•	 thanks	 to	 unified	 memory	 addressing	 and	 other	
improvements,	Fermi	can	run	object-oriented	c++	code,	
not	just	procedural	c.	this	will	make	programming	the	
GpU	easier.

•	 Fermi	 GpUs	 will	 have	 as	 many	 as	 six	 I/O	 interfaces	 to	
external	 Dram,	 each	 64	 bits	 wide.	 although	 nvidia	
has	not	announced	which	 types	of	memory	Fermi	will	
support,	these	interfaces	will	provide	greater	bandwidth	
when	coupled	with	the	latest	GDDr5	Dram.

•	 the	memory	hierarchy	is	fully	cached,	including	new	L1	
caches	shared	by	tightly	coupled	groups	of	32	processor	
cores.	For	each	group,	programmers	can	partition	64Kb	
of	Sram	to	serve	as	a	hardware-managed	L1	cache	or	a	
software-managed	shared	memory.

•	 Fermi	 can	 run	 concurrent	 “cUDa	 kernels”	 or	 global	
functions,	whereas	existing	nvidia	GpUs	are	 limited	 to	

running	multiple	threads	within	one	kernel.	this	feature	
adds	another	level	of	parallelism.

•	 nvidia	 has	 revamped	 the	 entire	 instruction-set	 archi-
tecture	 (ISa)	 to	 make	 it	 an	 easier	 target	 for	 high-level	
compilers.	among	other	enhancements,	all	instructions	
are	predicated,	eliminating	the	need	for	separate	branch	
instructions	in	some	code	sequences.

•	 an	 improved	 instruction	 scheduler	 can	 issue	 two	 opera-
tions	per	clock	cycle,	versus	one	operation	per	clock	before.

•	 a	 new	 load/store	 unit	 can	 execute	 16	 operations	 per	
cycle,	 greatly	 improving	 I/O	 performance.	 atomic	
read-modify-write	instructions	are	5	to	20	times	faster.	

Some	 of	 these	 enhancements	 are	 unimportant	 for	 3D	
graphics	but	were	requested	by	nvidia’s	existing	and	pro-
spective	GpU-computing	customers.	Indeed,	some	features	
(such	as	ecc)	would	actually	reduce	graphics	performance.	
to	avoid	compromising	the	GpU’s	central	role	as	a	graphics	
coprocessor,	Fermi	has	provisions	for	disabling	or	bypass-
ing	 features	 that	 are	 irrelevant	 for	 graphics.	 For	 instance,	
GeForce-branded	GpUs	for	consumer	pcs	will	omit	ecc;	
tesla-	 and	 Quadro-branded	 GpUs	 for	 workstations	 and	
supercomputers	will	include	it.

GPU Computing Takes Off
Fermi	surpasses	the	latest	GpU	announced	by	nvidia’s	lead-
ing	competitor,	amD.	conceptually,	Fermi’s	closest	competi-
tor	is	Intel’s	Larrabee.	expected	to	debut	next	year,	Larrabee	
chips	will	attack	the	market	from	the	opposite	direction.	they	
will	use	general-purpose	x86-architecture	cores	for	both	3D	
graphics	and	GpU	computing—a	radically	different	approach	
from	adapting	a	specialized	3D-graphics	architecture	for	gen-
eral-purpose	computing.	Until	the	first	Larrabee	chips	appear,	
it’s	not	clear	whether	the	x86	can	make	such	a	leap.	(See	MPR
9/29/08-01,	“Intel’s	Larrabee	redefines	GpUs.”)

no	wonder	this	market	is	attracting	big-gun	competition.	
by	 nvidia’s	 estimates,	 the	 total	 available	 market	 for	 GpU	
computing	is	worth	about	$1.1	billion	a	year.	Figure	1	breaks	
down	the	market	into	broad	categories.	by	comparison,	the	
total	available	market	for	GpUs	in	desktop	pcs	is	worth	$1.5	
billion	to	$2.0	billion	a	year.	However,	GpU	computing	is	still	
in	its	infancy.	It’s	sure	to	grow	as	GpUs	become	more	pow-
erful,	 software-development	 tools	 improve,	 programmers	
become	more	experienced,	customers	find	new	applications,	
and	more	companies	realize	that	GpU	computing	gives	them	
a	competitive	edge.

Fundamentally,	Fermi	processors	are	still	graphics	proces-
sors,	not	general-purpose	processors.	the	system	still	needs	
a	host	cpU	to	run	the	operating	system,	supervise	the	GpU,	
provide	 access	 to	 main	 memory,	 present	 a	 user	 interface,	
and	perform	everyday	tasks	that	have	little	or	no	data-level	
parallelism.	 However,	 nvidia’s	 new	 features	 and	 improve-
ments	will	transform	Fermi	GpUs	into	hybrid	coprocessors,	
capable	of	tackling	a	wider	range	of	applications—for	con-
sumers	and	professionals.

E d i t o r ’s N o t e

Microprocessor Report adapted and expanded this
article from an In-Stat white paper written for Nvidia.
The white paper was researched, written, and
reviewed to the same standards as MPR articles. The
white paper is available on Nvidia’s website at www.
nvidia.com/fermi.

3Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

Understanding the Fermi Architecture
nvidia’s	 terminology	 can	 be	 confusing	 for	 those	
accustomed	 to	 general-purpose	 cpU	 architectures	
like	 the	 Intel	 x86.	 the	 confusion	 isn’t	 deliberate.	
It’s	partly	a	consequence	of	the	graphics	heritage	of	
nvidia’s	 architectures,	 but	 another	 reason	 is	 nvid-
ia’s	 massively	 parallel	 approach	 to	 multithreading.	
Whereas	 an	 Intel	 x86	 processor	 core	 with	 Hyper-
threading	 typically	 executes	 two	 threads	 per	 core,	
an	 nvidia	 GpU	 frequently	 works	 on	 thousands	 of	
threads,	switching	among	them	on	every	clock	cycle.

cUDa	architectures	have	more	 in	common	with	
the	highly	specialized,	massively	parallel	cpU	archi-
tectures	 that	 have	 occasionally	 appeared	 since	 the	
mid-1990s.	 Like	 cUDa,	 these	 architectures	 typi-
cally	 have	 large	 numbers	 of	 very	 simple	 processor	
cores	 and	 massively	 threaded	 programming	 mod-
els.	However,	almost	all	the	specialized	architectures	
soon	failed	in	the	marketplace.	Some	met	resistance	
because	programming	was	too	difficult.	Others	were	
doomed	because	their	parent	companies	were	underfunded	
or	 poorly	 managed	 startups.	 Sometimes	 they	 disappeared	
only	because	no	one	gave	them	a	chance.

although	 nvidia	 is	 overcoming	 many	 of	 the	 techni-
cal	 hurdles	 of	 those	 architectures,	 a	 bigger	 factor	 contrib-
utes	to	cUDa’s	success.	cUDa	comes	from	a	large,	mature	
company,	and	it	piggybacks	on	the	high-volume	consumer	
graphics	 market.	 In	 effect,	 games	 are	 subsidizing	 cUDa’s	
development	 while	 the	 GpU-computing	 market	 becomes	
self-sufficient.	Furthermore,	the	multicore	cpUs	from	Intel,	
amD,	 and	 other	 companies	 are	 driving	 new	 demand	 for	
better	parallel-programming	languages	and	tools.	cUDa	is	
riding	all	these	waves.

Fermi	 is	a	significant	advance	over	previous	GpU	archi-
tectures.	 nvidia’s	 first	 architecture	 expressly	 modified	 for	
GpU	computing	was	the	G80,	introduced	in	november	2006	
with	 the	 GeForce	 8800.	 the	 G80	 departed	 from	 the	 tradi-
tional	approach	of	using	dedicated	shaders,	separate	vertex/
pixel	pipelines,	manually	managed	vector	registers,	and	other	
features	 that	 were	 efficient	 for	 graphics	 but	 unwieldy	 for	
general-purpose	computing.	the	G80	was	also	nvidia’s	first	
GpU	architecture	programmable	in	c—an	essential	feature	
for	compute	applications.

G80-class	 GpUs	 had	 128	 programmable	 shaders,	 later	
called	 streaming	 processor	 cores	 and	 now	 known	 simply	
as	 cUDa	 cores.	 eight	 cUDa	 cores	 were	 grouped	 into	 a	
“streaming	 multiprocessor”	 whose	 cores	 shared	 common	
resources,	 such	 as	 local	 memory,	 register	 files,	 load/store	
units,	and	thread	schedulers.	G80-class	chips	had	16	of	these	
streaming	 multiprocessors	 (16	 Sms	 x	 8	 cUDa	 cores	 per	
Sm	=	128	cores	per	chip).	With	time	slicing	and	fast	thread	
switching,	a	streaming	multiprocessor	can	run	thousands	of	
parallel	threads	on	these	cores.

In	 June	 2008,	 nvidia	 introduced	 the	 Gt200	 architec-
ture.	the	Gt200	retained	eight	cUDa	cores	per	streaming	

	multiprocessor	 but	 bumped	 the	 number	 of	 those	 multi-
processors	 to	 30,	 for	 a	 total	 of	 240	 cUDa	 cores	 per	 chip.	
Gt200	chips	are	sold	as	the	GeForce	GtX280	(for	consumer	
pcs),	Quadro	FX5800	(for	workstations),	and	tesla	t10	(for	
high-performance	 computing).	 these	 were	 also	 the	 first	
nvidia	 GpUs	 to	 support	 double-precision	 floating-point	
	operations—unnecessary	for	3D	graphics	but	vital	for	many	
scientific	and	engineering	programs.

Fermi	supersedes	the	Gt200	architecture.	It	has	32	cUDa	
cores	 per	 streaming	 multiprocessor—four	 times	 as	 many	
as	 the	 Gt200	 and	 G80.	 Initially,	 Fermi	 GpUs	 will	 have	 16	
streaming	 multiprocessors,	 for	 a	 total	 of	 512	 cUDa	 cores	
per	 chip.	 this	 expansion	 alone	 would	 significantly	 boost	
throughput,	but	additional	enhancements	deliver	even	more	
performance.

Fermi, From the Ground Up
the	 block	diagrams	 that	 follow	 illustrate	 the	 Fermi	archi-
tecture.	Figure	2	starts	at	ground	level,	showing	an	exploded	
view	 of	 a	 single	 cUDa	 core	 and	 its	 relationship	 to	 the	
streaming	 multiprocessor	 to	 which	 it	 belongs.	although	 a	
cUDa	 core	 resembles	 a	 general-purpose	 processor	 core,	
like	those	found	in	a	multicore	x86	cpU,	it’s	much	simpler,	
reflecting	its	heritage	as	a	pixel	shader.

each	 cUDa	 core	 has	 a	 pipelined	 floating-point	 unit	
(FpU),	a	pipelined	integer	unit,	some	logic	for	dispatching	
instructions	and	operands	to	these	units,	and	a	small	queue	
for	holding	results.	and	that’s	all.

Unlike	 the	 processor	 cores	 typically	 found	 in	 general-
purpose	microprocessors,	cUDa	cores	lack	their	own	reg-
ister	files	or	L1	caches.	nor	do	they	have	multiple	function	
units	for	each	data	type	(floating-point	and	integer).	In	fact,	
they	don’t	even	have	a	load/store	unit	for	accessing	memory.	
cUDa	cores	are	very	simple	processing	engines	designed	to	
execute	only	one	instruction	at	a	time	per	thread	and	then	

Seismic
GPU TAM $300M
- Energy discovery
- Broad adoption

Supercomputing
GPU TAM $200M
- World-class science
- Top 500

Universities
GPU TAM $150M
- Desk supercomputing
- Thousands of customers

Defense
GPU TAM $250M
- Signal analysis
- Very high need for
 compute resource

Finance
GPU TAM $230M
- Pricing and risk
- Higher accuracy, faster

Figure 1. Nvidia estimates that the total available market (TAM) for GPU comput-
ing is at least half as large as the desktop-PC market for GPUs. The upside potential
looks greater. Whereas the PC market is maturing, GPU computing barely existed
four years ago and is growing fast.

4 Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

quickly	 switch	 to	 another	 thread.	 they	 are	 optimized	 not	
for	single-threaded	performance	as	individuals	but	for	mul-
tithreaded	performance	when	operating	en	masse.

Figure	 3	 shows	 a	 Fermi	 streaming	 multiprocessor	 with	
32	 cUDa	 cores	 and	 additional	 elements.	 this	 diagram	
explains	why	cUDa	cores	can	get	by	without	their	own	reg-
ister	 files,	 caches,	 or	 load/store	 units—those	 resources	 are	
shared	among	all	32	cUDa	cores	in	a	streaming	multipro-
cessor.	those	32	cores	are	designed	to	work	in	parallel	on	32	
instructions	at	 a	 time	 from	a	bundle	of	32	 threads,	which	
nvidia	 calls	 a	“warp.”	 (this	 organization	 has	 implications	
for	the	cUDa	programming	model,	as	we’ll	explain	below.)

at	the	top	of	Figure	3,	notice	the	L1	instruction	cache—a	
new	 feature	 in	 Fermi.	 (nvidia	 hasn’t	 disclosed	 the	 size	 of	
this	cache.)	each	streaming	multiprocessor	also	has	64Kb	of	
configurable	local	memory	that	programmers	can	partition	
as	L1	data	cache	and	general-purpose	shared	memory.	each	
partition	can	be	either	16Kb	or	48Kb.	In	contrast,	the	G80	
and	Gt200	architectures	had	only	16Kb	of	shared	memory	
per	 streaming	 multiprocessor,	 and	 the	 memory	 couldn’t	
operate	as	hardware-managed	L1	caches.

Massively Parallel Multithreading
another	shared	resource	in	a	streaming	multiprocessor	is	the	
instruction-scheduling	and	dispatch	 logic.	Fermi	 improves	

on	 the	 scheduler	 in	previous	cUDa	architectures	by	 issu-
ing	two	instructions	per	clock	cycle	instead	of	one.	However,	
this	capability	isn’t	quite	the	same	as	the	dual-issue	schedul-
ing	in	conventional	superscalar	microprocessors.

In	a	Fermi	GpU,	 the	dual-issue	pipelines	are	decoupled	
and	 independent.	 they	 cannot	 issue	 two	 instructions	 per	
cycle	from	the	same	thread.	Instead,	they	issue	two	instruc-
tions	per	cycle	 from	different	warps.	each	streaming	mul-
tiprocessor	 can	 manage	 48	 warps.	 because	 each	 warp	 has	
32	 threads,	 a	 streaming	 multiprocessor	 can	 manage	 1,536	
threads.	With	 16	 streaming	 multiprocessors,	 a	 Fermi-class	
GpU	can	handle	24,576	parallel	threads.

multithreading	on	this	scale	looks	intimidating,	but	pro-
grammers	 needn’t	 manage	 the	 threads	 explicitly—cUDa	
does	that.	also,	the	threads	in	a	warp	should	have	no	inter-
dependencies.	 In	 theory,	 cUDa	 makes	 deadlocks	 between	
threads	 impossible,	overcoming	a	major	 source	of	bugs	 in	
multithreaded	 code.	 (See	 MPR 4/30/07-02,	“the	 Dread	 of	
threads.”)

Of	 course,	 there	 aren’t	 enough	 cUDa	 cores	 to	 execute	
instructions	 from	 every	 thread	 on	 every	 clock	 cycle.	 each	

Figure 3. Streaming-multiprocessor block diagram. In the Fermi archi-
tecture, each streaming multiprocessor has 32 CUDA cores—four
times as many as the previous GT200 and G80 architectures. All
32 cores share the resources of their streaming multiprocessor, such
as registers, caches, local memory, and load/store units. The “spe-
cial function units” (SFUs) handle complex math operations, such as
square roots, reciprocals, sines, and cosines.

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

Special Func Units x 4

Load/Store Units x 16

Uniform Cache

Interconnect Network

Warp
Scheduler

Register File
(32,768 x 32 bits)

Dispatch

Warp
Scheduler

Dispatch

Instruction Cache

64K Shared Memory/
L1 Data Cache

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

CoreCore CoreCore

Special Func Units x 4

Load/Store Units x 16

Uniform Cache

64K Shared Memory/
L1 Data Cache

Interconnect Network

Warp
Scheduler

Register File
(32,768 x 32 bits)

Dispatch

Warp
Scheduler

Dispatch

CUDA Core

FP Unit INT Unit

Result Queue

Dispatch Port

Operand Collector

Instruction Cache

Figure 2. CUDA-core block diagram. CUDA cores evolved from pixel
shaders, so they are very simple processor cores. The cores lack their
own general-purpose register file, L1 caches, multiple function units for
each data type, and load/store units for retrieving and saving data.

5Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

core	executes	only	one	instruction	per	cycle,	so	instructions	
from	 “only”	 512	 threads	 can	 execute	 at	 a	 given	 moment.	
Switching	among	 threads	 is	 instantaneous,	 so	 instructions	
from	 512	 different	 threads	 can	 execute	 on	 the	 next	 clock	
cycle,	and	so	on.	this	massively	parallel	threading	is	the	key	
to	 cUDa’s	 high	 throughput.	 Figure	 4	 illustrates	 how	 the	
warp	schedulers	and	dispatch	units	interleave	the	warps	and	
the	instructions	from	different	threads.

another	 shared	 resource	 in	 a	 streaming	 multiproces-
sor	 is	a	new	 load/store	unit,	which	can	execute	16	 load	or	
store	 operations	 per	 clock	 cycle.	 It	 does	 even	 better	 when	
using	a	special	“uniform	cache,”	seen	at	the	bottom	of	Fig-
ure	3.	matrix-math	operations	often	load	scalar	values	from	
sequential	 addresses	 belonging	 to	 a	 particular	 thread,	 and	
they	also	load	a	common	value	shared	among	all	threads	in	
a	warp.	In	those	cases,	a	streaming	multiprocessor	can	load	
two	operands	per	cycle.

Figure	5	 is	 the	highest-level	view	of	 the	Fermi	architec-
ture.	all	16	streaming	multiprocessors—each	with	32	cUDa	
cores—share	 a	 768Kb	 unified	 L2	 cache.	 by	 the	 standards	
of	 modern	 general-purpose	 cpUs,	 this	 cache	 is	 relatively	
small,	but	previous	cUDa	architectures	had	no	L2	cache	at	
all.	Fermi	maintains	cache	coherency	 for	all	 the	 streaming	
multiprocessors	sharing	the	L2	cache.

thread	scheduling	is	managed	in	hardware,	not	in	soft-
ware.	Fermi	has	an	 improved	“Gigathread”	scheduler	 that	
can	manage	thousands	of	simultaneous	threads	and	switch	
contexts	between	graphics	and	compute	applications	 in	as	
little	 as	 25	 microseconds—ten	 times	 faster	 than	 nvidia’s	
previous	 schedulers.	 Switching	 among	 threads	 within	 a	
graphics	or	compute	instruction	stream	
requires	only	one	clock	cycle,	but	alter-
nating	 between	 graphics	 and	 compute	
workloads	 takes	 longer,	 because	 the	
caches	must	be	flushed	and	refilled.

Fermi’s Memory Hierarchy
the	memory	hierarchy	of	a	Fermi	GpU	
is	 somewhat	 different	 from	 the	 better-
known	 hierarchy	 of	 a	 general-purpose	
cpU.	For	one	 thing,	 a	GpU	has	a	 large	
frame	buffer—as	much	as	a	gigabyte	of	
Dram	in	today’s	systems.	Originally,	the	
frame	 buffer	 was	 dedicated	 to	 graphics	
data.	but	programs	can	stash	any	data	in	
this	buffer,	a	valuable	feature	for	general-
purpose	 computing.	 For	 nongraphics	
applications,	nvidia	sometimes	refers	to	
the	frame	buffer	as	“local	Dram.”

another	important	difference	between	
GpUs	and	cpUs	is	their	proximity	to	sys-
tem	 memory.	 cpUs	 have	 a	 direct	 path	
to	main	memory	 through	an	 integrated	
memory	controller	or	the	north	bridge	of	
the	system	chipset.	GpUs	must	reach	out	

over	 the	 pcI	 express	 bus	 by	 sending	 a	 request	 to	 the	 host	
cpU.	the	long	latency	inherent	in	this	transaction	requires	
GpU	programmers	to	use	 local	Dram,	caches,	and	shared	
local	memory	more	wisely.	Figure	6	illustrates	the	memory	
hierarchy.

Figure 4. CUDA multithreading in the Fermi architecture. To achieve
massively parallel multithreading, CUDA bundles 32 threads into a
“warp” and executes one instruction from each thread per clock
cycle. Each streaming multiprocessor can manage 48 warps. The warp
schedulers and dispatch units interleave the threads and warps to
keep the CUDA processor cores busy. The GPU can switch from one
thread to another on each clock cycle.

Warp 15 instruction 96Warp 2 instruction 43

Warp 3 instruction 34Warp 14 instruction 96

Warp 9 instruction 12Warp 8 instruction 12

Warp 15 instruction 95Warp 14 instruction 95

Warp 3 instruction 33Warp 2 instruction 42

Warp 9 instruction 11Warp 8 instruction 11

Instruction Dispatch Unit

Warp Scheduler

Instruction Dispatch Unit

Warp Scheduler

... ...

Ti
m

e

Figure 5. Fermi architecture block diagram. This top-level view of the architecture shows the 16
streaming multiprocessors, the six 64-bit DRAM interfaces, the host interface (PCI Express), and
the GigaThread hardware thread scheduler.

D
R

A
M

 I/
F

D
R

A
M

 I/
F

H
O

ST
 I/

F
D

R
A

M
 I/

F

Shared L2 Cache (768K)

G
ig

aT
hr

ea
d

D
R

A
M

 I/
F

D
R

A
M

 I/
F

D
R

A
M

 I/
F

6 Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

High-level	 languages	 like	 c	 and	 c++	 usually	 have	 no	
concept	of	memory	hierarchy.	all	memory	looks	the	same	
to	 them	 (flat).	 Left	 alone,	 compilers	 would	 allocate	 mem-
ory	for	variables	inefficiently.	to	solve	this	problem,	nvidia	
added	new	keywords	to	its	cUDa	implementation	of	c	and	
c++.	these	keywords	precede	variable	declarations,	allow-
ing	 programmers	 to	 specify	 where	 the	 program	 will	 store	
the	 data	 referenced	 by	 the	 variable.	 this	 solution	 avoids	
unwanted	references	to	distant	memory.	Variables	declared	
without	a	special	keyword	will	be	local	to	a	thread.

For	example,	the	_device_	keyword	specifies	that	a	variable	
stores	data	in	the	GpU’s	local	Dram.	the	_shared_	keyword	
specifies	the	shared	memory	of	a	streaming	multiprocessor,	
so	 it	 limits	 access	 to	 a	block	of	 threads.	the	_global_	 key-
word	makes	a	variable	available	to	all	blocks	of	threads,	so	
the	data	probably	ends	up	in	system	memory.	However,	all	
types	of	memory	(except	shared	memory,	which	is	already	
local)	is	cacheable,	which	minimizes	slow	references	to	sys-
tem	memory.	Figure	7	illustrates	the	relationships	between	
local	 variables,	 shared	 variables,	 global	 variables,	 and	 the	
memory	regions	referenced	by	the	variables.

the	 six	 Dram	 interfaces	 seen	 in	 Figure	 5	 provide	 fast	
access	 to	 local	Dram,	essential	 for	graphics	processing	as	
well	 as	 for	 general-purpose	 computing.	 each	 64-bit	 inter-
face	can	work	 independently.	together,	 they	can	access	up	
to	6Gb	of	Dram	in	the	first	implementation	of	the	Fermi	
architecture.	 nvidia	 hasn’t	 announced	 which	 types	 of	
Dram	 will	 be	 supported	 or	 the	 bus	 speeds	 of	 the	 chips.	
currently,	nvidia’s	GtX280	uses	GDDr3	Dram	to	deliver	
141.7Gb/s	of	peak	bandwidth.	With	GDDr5	Dram,	Fermi	

will	certainly	exceed	that	performance.	nevertheless,	as	with	
all	 modern	 microprocessors,	 memory	 bandwidth	 remains	
the	most	likely	performance	bottleneck.

A Closer Look at Fermi’s Features
Fermi’s	 enhancements	 can	 be	 grouped	 into	 four	 broad	
categories:	 new	 features	 intended	 exclusively	 for	 general-
	purpose	 computing;	 improvements	 to	 memory	 and	 I/O;	
features	that	boost	instruction	throughput;	and	features	that	
aid	software	development.	they	run	the	gamut	from	hard-
ware	to	software.	Some	enhancements	are	useful	for	acceler-
ating	3D	graphics	as	well	as	for	GpU	computing.	although	
Fermi	has	additional	new	features	exclusively	 for	graphics,	
nvidia	hasn’t	disclosed	them	at	this	time.

the	 most-wanted	 new	 feature	 for	 GpU	 computing	 is	
ecc.	 It’s	 also	 a	 key	 feature	 that	 will	 set	 nvidia’s	 GpUs	
apart	from	the	existing	competition.	amD’s	latest	GpU	has	
error	detection,	but	not	error	correction.	On	September	23,	
amD	introduced	the	first	chip	(code-named	cypress)	in	its	
new	evergreen	family	of	GpUs.	cypress	is	shipping	in	atI	
radeon	 HD5870	 and	 HD5850	 graphics	 cards.	 It	 imple-
ments	 error-detection	 codes	 (eDc)	 instead	 of	 ecc.	 eDc	
detects	 one-and	 two-bit	 errors	 during	 transmissions	 over	
the	GDDr5	bus	to	the	frame	buffer	and	then	automatically	
triggers	a	retransmission.

In	 contrast,	 ecc	 adds	 error-checking	 and	 correction	
hardware,	so	it	can	correct	most	errors	without	retransmis-
sion.	 nvidia’s	 implementation	 of	 ecc	 can	 detect	 one-bit	
and	two-bit	errors,	and	it	can	correct	one-bit	errors.	Fermi	
adds	ecc	to	the	I/O	pins	of	the	chip’s	external	Dram	inter-
faces,	but	it	doesn’t	stop	there.	nvidia	has	implemented	ecc	
throughout	the	Fermi	architecture—to	the	register	files	and	
shared	memories	of	the	streaming	multiprocessors,	and	to	
the	coherent	L2	cache	shared	by	all	the	multiprocessors.	Few	
chips	implement	ecc	as	thoroughly	as	Fermi	does.

ecc	protects	data	transfers	against	transient	soft	errors,	
such	as	those	induced	by	electromagnetic	interference	and	
the	radiation	constantly	bombarding	the	earth	from	outer	
space.	 Soft	 errors	 are	 growing	 worse	 as	 transistors	 keep	
shrinking	in	step	with	moore’s	law.	(nvidia	is	manufactur-
ing	 the	 first	Fermi	chips	 in	tSmc’s	40nm	cmOS	fabrica-
tion	process—the	same	process	amD	is	using	for	cypress.)	
If	an	error	is	too	severe	for	ecc	to	correct,	the	program	can	
retransmit	the	data	or	display	an	error	message	to	the	user.	
ecc	is	particularly	important	for	data-center	applications,	
where	the	failure	rate	of	an	individual	component	is	ampli-
fied	by	the	large	scale	of	the	system.

With	existing	GpUs,	developers	 resort	 to	various	work-
arounds	for	the	lack	of	ecc.	Some	programmers	implement	
ecc	 in	 software,	 severely	 impairing	 performance.	 Others	
tell	users	to	run	their	programs	two	or	more	times	on	the	
same	data,	then	compare	the	results	for	consistency.	by	add-
ing	ecc	hardware	to	its	next-generation	Fermi	processors,	
nvidia	is	giving	notice	that	it’s	serious	about	mission-critical	
computing.

Figure 6. Fermi’s memory hierarchy. The shared memory and L1 cache
are local to each 32-core streaming multiprocessor and shared by all
those cores. The L2 cache is coherently shared among all 16 multipro-
cessors in the GPU. In this diagram, “DRAM” refers primarily to the
GPU’s local DRAM (frame buffer), attached directly to the GPU. Addi-
tional DRAM is available in the system’s main memory, but it requires
a lengthy transaction over the PCI Express bus.

DRAM

Shared Memory

L2 Cache

L1 Cache

Thread

7Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

there’s	always	a	price	to	pay	for	ecc,	even	
when	implemented	in	hardware—and	espe-
cially	 when	 ecc	 is	 implemented	 as	 exten-
sively	as	it	is	throughout	Fermi.	nvidia	esti-
mates	that	performance	will	suffer	by	5%	to	
20%,	depending	on	the	application.	For	crit-
ical	 programs	 requiring	 absolute	 accuracy,	
that	overhead	is	of	no	concern.	It’s	certainly	
much	 better	 than	 the	 overhead	 imposed	
by	 existing	 work-arounds.	 For	 less-critical	
applications,	 the	 performance	 hit	 could	
be	 a	 killer.	 that’s	 why	 nvidia	 allows	 pro-
grammers	to	disable	ecc	in	tesla-branded	
GpUs	for	the	professional	market	and	won’t	
enable	ecc	at	all	 in	GeForce	GpUs	for	the	
consumer	market.

Double Precision Gets a Boost
another	 Fermi	 enhancement	 that	 focuses	
primarily	 on	 high-performance	 comput-
ing	is	faster	double-precision	floating-point	
math.	 traditionally,	 GpUs	 have	 been	 opti-
mized	 for	 single-precision	 (32-bit)	 floating-point,	 because	
it’s	 sufficient	 for	 3D	 graphics.	 However,	 many	 scientific	
and	engineering	applications	need	the	greater	accuracy	and	
range	of	double-precision	(64-bit)	numbers.

For	 nvidia,	 these	 competing	 interests	 pose	 a	 difficult	
trade-off.	Implementing	64-bit	FpUs	and	datapaths	through-
out	the	processor	would	approximately	double	the	amount	
of	floating-point	computational	logic	and	wiring.	the	chip	
would	 be	 larger	 (e.g.,	 costlier)	 and	 use	 more	 power,	 yet	 it	
would	 be	 no	 better	 for	 its	 primary	 market—consumer	 3D	
graphics.

as	 a	 result,	GpUs	didn’t	 even	 support	double-precision	
floating	point	until	very	recently,	and	the	initial	support	has	
been	lackluster.	the	first	nvidia	GpU	to	have	double	preci-
sion	was	the	Gt200-based	GeForce	GtX280,	introduced	in	
June	2008.	With	Fermi,	nvidia	is	taking	a	big	step	forward.	
the	new	architecture	is	up	to	eight	times	faster	with	double-
precision	floating	point	and	enhances	the	accuracy	of	some	
single-precision	operations,	too.

Fermi’s	 floating-point	 datapaths	 are	 still	 32	 bits	 wide,	
minimizing	 the	 amount	 of	 logic	 and	 wiring	 throughout	
the	 chip.	 to	 perform	 64-bit	 operations,	 these	 32-bit	 paths	
are	paired,	and	nvidia	has	significantly	improved	their	effi-
ciency.	a	64-bit	floating-point	operation	is	now	exactly	half	
as	 fast	 as	 a	 32-bit	 floating-point	 operation.	although	 that	
relationship	seems	only	logical	when	pairing	two	32-bit	dat-
apaths,	today’s	GpUs	are	much	slower,	because	the	synchro-
nization	is	less	efficient.

Specifically,	 a	 Fermi-class	 streaming	 multiprocessor	 can	
execute	 16	 double-precision	 fused	 multiply-add	 (Fma)	
instructions	per	clock	cycle.	that’s	eight	times	faster	than	the	
FpUs	in	today’s	Gt200	chips.	an	Fma	performs	two	opera-
tions	with	a	single	instruction	(D	=	a	x	b	+	c).	therefore,	

a	 Fermi-class	 streaming	 multiprocessor	 can	 execute	 32	
	double-precision	 floating-point	 operations	 per	 cycle.	 With	
16	 streaming	 multiprocessors	 per	 chip,	 a	 Fermi	 GpU	 can	
execute	 512	 billion	 double-precision	 floating-point	 opera-
tions	per	gigahertz.

Striving for Teraflops
currently,	 the	 streaming	 multiprocessor	 in	 a	 GeForce	
GtX280	 chip	 runs	 at	 1.29GHz,	 limited	 by	 an	 older	 65nm	
fabrication	process.	manufactured	at	40nm,	a	Fermi-based	
GpU	should	easily	exceed	that	clock	frequency.	(nvidia	has	
not	yet	disclosed	the	clock	rates	for	Fermi	GpUs.)

at	 1.5GHz	 (our	 very	 conservative	 estimate),	 the	 GpU	
would	 deliver	 768	 double-precision	 gigaflops—and	 twice	
as	many	single-precision	gigaflops.	(Fermi’s	enhanced	Fma	
instruction	supports	32-bit	operations,	unlike	previous	gen-
erations.)	at	2.0GHz,	double-precision	performance	would	
reach	 the	 magic	 teraflops	 threshold,	 once	 the	 province	 of	
multimillion-dollar	room-size	supercomputers.

at	 its	 core	clock	 frequency	of	850mHz,	amD’s	cypress	
(in	 the	 radeon	 HD5870)	 reaches	 544	 gigaflops	 (double	
precision)	 and	 2.7	 teraflops	 (single	 precision).	 clock	 for	
clock,	cypress	looks	faster	than	Fermi,	but	it	appears	to	be	
more	clock-limited.	also,	the	difference	between	single-	and	
	double-precision	 performance	 is	 much	 greater—about	 5x	
vs.	2x.	both	architectures	will	soon	break	the	double-preci-
sion	teraflops	barrier.

Intel’s	 Larrabee	 aspires	 to	 similar	 levels	 of	 performance.	
Using	Fma	instructions	in	its	16-lane	vector-processing	units,	
a	Larrabee	x86	core	can	perform	32	single-precision	floating-
point	 operations	 per	 clock	 cycle.	 therefore,	 at	 1.0GHz,	 the	
maximum	theoretical	throughput	is	32	single-precision	giga-
flops	per	core.	Larrabee’s	SImD	lanes	are	32	bits	wide	and	are	

Figure 7. Memory allocation with CUDA. By using special CUDA keywords added to C, pro-
grammers can specify the memory regions in which variables store their data. This is impor-
tant not only for scoping the variables, but also for keeping local data close to the CUDA
processor cores. The wider the scope, the more distant the memory.

Per-thread
Local Memory

float LocalVar;

Kernel
Sequence

Kernel 1

Kernel 0

__device__ int GlobalVar;

__shared__ int SharedVar;

Per-block
Shared

Memory

Per-app
Device
Global

Memory

Thread Block

...

...

8 Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

paired	for	64-bit	operations,	so	double	precision	is	half	as	fast	
as	 single	precision	(just	 like	Fermi).	 Intel	hasn’t	announced	
specific	implementations	of	Larrabee,	so	the	number	of	cores	
per	chip	and	clock	 speeds	are	unknown.	at	1.0GHz,	a	Lar-
rabee	chip	would	need	32	cores	to	reach	one	single-precision	
teraflops.	 alternatively,	 16	 cores	 running	 at	 2.0GHz	 would	
reach	the	same	threshold.

In	 public	 presentations,	 Intel	 has	 estimated	 the	 relative	
(not	absolute)	performance	of	Larrabee	chips	with	as	few	as	
eight	cores	and	as	many	as	64	cores.	Microprocessor Report	
expects	 to	 see	different	designs	 for	different	markets,	with	
a	32-core	chip	initially	anchoring	the	high	end	of	the	Lar-
rabee	 line.	 the	 largest	 designs	 will	 probably	 challenge	 the	
floating-point	 performance	 of	 nvidia	 GpUs	 based	 on	 the	
Fermi	architecture.	Whether	Larrabee	can	deliver	that	per-
formance	at	a	similar	cost	and	with	similar	power	consump-
tion	remains	to	be	seen.	and	its	3D-graphics	performance	
(apart	 from	 raw	 floating-point	 performance)	 is	 another	
subject	 altogether.	 (See	 MPR 9/29/08-01,	“Intel’s	 Larrabee	
redefines	GpUs.”)

Better Multiply-Adds
In	addition	to	boosting	floating-point	throughput,	the	Fermi	
architecture	 improves	 precision.	 In	 fact,	 GpUs	 can	 now	
perform	 floating-point	 operations	 more	 accurately	 than	
x86	 processors	 do.	 Fermi	 maintains	 full	 precision	 during	
the	intermediate	calculations	of	an	Fma—even	for	single-
	precision	 operations—instead	 of	 truncating	 or	 rounding	
the	 intermediates.	previously,	only	double-precision	Fmas	
were	handled	this	way.

(precise	 single-precision	 arithmetic	 is	 important	 for	
3D-graphics	as	well	as	for	high-performance	computing.	It	
reduces	the	“sparkling”	effects	marring	the	edges	of	objects	
when	imprecise	calculations	change	the	positions	of	pixels	
from	one	frame	to	another.)

In	accordance	with	the	latest	Ieee	754-2008	specification,	
Fermi’s	floating-point	hardware	supports	all	four	rounding	
modes	 (nearest,	 zero,	 positive	 infinity,	 and	 negative	 infin-
ity).	there’s	also	new	hardware	support	for	handling	“sub-
normal”	 numbers—those	 that	 fall	 between	 the	 smallest-
	possible	 positive	 number	 and	 largest-possible	 negative	
number	of	the	floating-point	number	system.

today’s	GpUs	simply	flush	subnormal	numbers	to	zero,	
losing	accuracy.	an	x86	cpU	throws	an	exception	in	these	
cases	 and	 spends	 thousands	 of	 clock	 cycles	 handling	 the	
exception	 in	 software.	Fermi	handles	 subnormals	 in	hard-
ware,	allowing	them	to	gravitate	toward	zero	without	sacri-
ficing	accuracy	or	performance.

nvidia’s	 enhanced	 Fma	 instruction	 and	 full	 support	 for	
Ieee	754-2008	put	the	Fermi	architecture	on	par	with	other	
high-performance	 microprocessor	 architectures	 and	 exceed	
the	 capabilities	 of	 some	 of	 them.	 Intel’s	 latest	 Streaming	
SImD	extensions	(SSe4.2)	for	the	x86	lack	an	Fma,	and	the	
x86	 incurs	 rounding	 errors	 when	 performing	 its	 version	 of	
a	multiply-add	(maDD).	However,	Intel	is	introducing	new	
Fma	instructions	for	the	16-lane	vector-processing	units	in	
Larrabee.	Intel’s	Itanium	architecture	also	has	Fma,	as	does	
Ibm’s	cell	broadband	engine	(but	only	for	double	precision,	
not	single	precision).

along	with	much	faster	double-precision	throughput,	the	
greater	precision	of	these	operations	makes	the	Fermi	archi-
tecture	a	serious	contender	in	the	realm	of	high-performance	
computing	for	science	and	engineering.	On	September	30,	
Oak	ridge	national	Laboratory	announced	plans	to	build	a	
huge	new	supercomputer	based	on	Fermi.	applications	will	
include	energy	research	and	climate	modeling.

New Concurrency for Global Kernels
another	significant	performance	improvement	in	the	Fermi	
architecture	is	the	ability	to	run	concurrent	global	functions,	

or	“cUDa	 kernels,”	 as	 nvidia	 calls	 them.	 existing	
cUDa	 architectures	 can	 execute	 multiple	 threads	
within	 a	 kernel,	 but	 they	 can’t	 run	 more	 than	 one	
kernel	at	a	time.	Figure	8	compares	a	function	writ-
ten	in	standard	c	code	with	a	cUDa	kernel	rewrit-
ten	for	parallel	execution.

concurrent	 global	 kernels	 add	 another	 level	 of	
parallelism	to	cUDa.	previous	cUDa	architectures	
are	limited	to	exploiting	data-level	parallelism	when	a	
single	algorithm	operates	on	a	single	data	set.	a	global	
kernel	may	call	a	sequence	of	algorithms	in	a	step-by-
step	fashion;	and	the	data	may	reside	in	two	or	more	
arrays;	 and	 the	 function	 may	 spawn	 thousands	 of	
threads.	However,	at	any	given	moment,	the	stream-
ing	multiprocessors	can	execute	only	one	global	ker-
nel.	executing	another	global	kernel	requires	waiting	
for	the	previous	global	kernel	to	finish.

the	 Fermi	 architecture	 overcomes	 that	 limita-
tion	and	allows	up	to	16	independent	global	kernels	
to	execute	concurrently.	this	 feature	adds	a	degree	

Computing y _ ax + y with a serial loop:
void saxpy_serial(int n, float alpha, float *x, float *y)
{

for(int i = 0; i<n; ++i)
y[i] = alpha*x[i] + y[i];

}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y _ ax + y in parallel using CUDA:
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<n) y[i] = alpha*x[i] + y[i];

}
// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Figure 8. CUDA kernels are modified versions of conventional functions written
in C. The _global_ keyword is a special CUDA extension—it tells the compiler this
function is a CUDA kernel. The other changes tell the compiler to divide the work-
load into blocks, each with 256 threads.

9Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

of	 instruction-level	 parallelism	 to	
cUDa’s	 forte,	 data-level	 parallel-
ism.	 programmers	 who	 can	 wrap	
their	brains	around	these	concepts	
will	see	their	code	run	a	lot	faster.	
(See	 MPR 3/31/08-01,	 “think	
	parallel.”)

One	remaining	limitation	is	that	
concurrent	 global	 kernels	 must	
belong	to	the	same	program.	Fermi	
still	 cannot	 manage	 application-
level	 parallelism.	 For	 example,	 as	
is	 the	 case	 today,	 the	 GpU	 must	
switch	contexts	to	handle	the	sepa-
rate	 instruction	streams	of	graph-
ics	 and	 compute	 tasks.	 neverthe-
less,	 the	 additional	 parallelism	 of	
concurrent	 kernels	 within	 a	 pro-
gram	 is	 a	 welcome	 enhancement	
to	cUDa’s	prodigious	capacity	for	
data-level	parallelism.

table	 1	 summarizes	 the	 salient	
differences	 between	 the	 Fermi	
architecture	and	nvidia’s	previous	
Gt200	and	G80	architectures.

Instruction-Set Improvements
nvidia	 has	 overhauled	 the	 Fermi	
instruction-set	 architecture	 (ISa)	
to	make	it	friendlier	for	high-level	
language	 compilers.	 For	 instance,	
all	 instructions	 are	 now	 fully	
predicated.	 an	 instruction	 can	
decide	 whether	 or	 not	 to	 execute	
by	 checking	 a	 status	 bit,	 which	
may	 be	 set	 or	 cleared	 by	 a	 previ-
ous	 instruction.	 In	 some	 code	
sequences,	 predication	 eliminates	
the	need	for	separate	compare	and	
branch	instructions,	allowing	a	compiler	to	generate	more-
	streamlined	code.

additionally,	 the	 Fermi	 ISa	 improves	 the	 efficiency	 of	
“atomic”	 integer	 instructions.	 these	 are	 read-modify-write	
instructions	that	read	a	value	in	memory,	modify	the	value	
by	performing	an	arithmetic	or	logical	operation,	and	then	
quickly	write	the	result	back	to	the	same	memory	location.	
atomic	instructions	must	be	uninterruptible.	Otherwise,	an	
incomplete	sequence	of	operations	would	 leave	the	data	 in	
an	 unpredictable	 state,	 with	 possibly	 serious	 consequences	
for	the	program.

nvidia	 GpUs	 have	 included	 atomic	 instructions	 since	
2007,	 but	 they	 were	 relatively	 slow.	 Fermi	 makes	 them	
5	 to	 20	 times	 faster.	 the	 method	 is	 unorthodox—atomic	
instructions	 are	 handled	 by	 special	 integer	 units	 attached	
to	 the	L2	cache	controller,	not	by	 the	 integer	units	 in	 the	

cUDa	 cores.	 executing	 atomic	 instructions	 in	 the	 cores	
would	 introduce	 too	much	 latency	as	 the	data	 is	 shuttled	
across	the	chip.

efficient	handling	of	atomic	instructions	is	important	for	
software	 developers.	 two	 emerging	 standards	 for	 parallel	
programming	have	embraced	the	concept	of	atomic	opera-
tions:	OpencL	and	Directcompute.

OpencL	 is	 an	 open	 industry	 standard	 managed	 by	 the	
OpencL	 compute	 Working	 Group,	 which	 is	 part	 of	 an	
industry	consortium	called	the	Khronos	Group.	Directcom-
pute	 is	 an	 application	 programming	 interface	 (apI)	 from	
microsoft	and	was	formerly	known	as	compute	Shader	or	
DirectX	11	compute.	Directcompute	 is	part	of	 the	 larger	
DirectX	10	and	DirectX	11	apIs	in	Windows	Vista	and	Win-
dows	 7.	 Developers	 can	 use	 OpencL	 or	 Directcompute	
instead	of	(or	in	addition	to)	nvidia’s	cUDa	tools.

Table 1. Comparison of Nvidia’s three CUDA-capable GPU architectures. The G80, introduced in 2006,
opened the door to CUDA and was Nvidia’s first architecture modified for GPU computing. The GT200
architecture followed in 2008. Although it improved performance, it retained several limitations of
the G80. The new Fermi architecture overcomes most of those limitations and adds features not seen
before in GPUs, such as error-correction codes (ECC). *The shared memory and L1 data cache in each
streaming multiprocessor is 64KB of SRAM. Programmers can partition this memory into 16KB and 48KB
segments, using either segment as cache or as closely coupled shared memory.

Feature
Nvidia
Fermi

Nvidia
GT200

Nvidia
G80

Introduction 2009 2008 2006

Single-Precision FP
512 fused multiply-add

ops per cycle
240 multiply-add

ops per cycle
128 multiply-add

ops per cycle

Double-Precision FP
256 fused multiply-add

ops per cycle
30 fused multiply-
add ops per cycle

—

IEEE 754-2008 Compliance Full, SP and DP DP only —

Streaming Multiprocessors 16 30 16

CUDA Cores Per SM 32 8 8

Warp Schedulers Per SM 2 1 1

Special Function Units Per SM 4 2 2

Shared Memory Per SM*
48KB or 16KB
(configurable)

16KB 16KB

L1 Instruction Cache Per SM Yes — —

L1 Data Cache Per SM*
16KB or 48KB
(configurable) — —

Total CUDA Processor Cores 512 240 128

L2 Cache 768KB, shared — —

Error-Correction Codes
DRAM, shared memories,

L2 cache, registers
— —

Concurrent Kernels Up to 16 — —

Fully Predicated ISA Yes — —

Memory Addressing
40 bits (1TB),

unified
32 bits (4GB),

divided
32 bits (4GB),

divided

Memory I/O Interfaces
6 x 64 bits,
6GB DRAM

8 x 64 bits,
1GB GDDR3 DRAM

6 x 64 bits,
768MB GDDR3

C++ Programmable Yes — —

Transistors 3.0 billion 1.4 billion 681 million

10 Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

although	some	observers	view	OpencL	and	Directcom-
pute	as	competition	for	cUDa,	nvidia	insists	the	technolo-
gies	 are	 complementary.	nvidia	has	voiced	 support	 for	 all	
GpU	programming	models	and	works	closely	with	micro-
soft	 and	 the	 OpencL	 group.	 On	 September	 28,	 nvidia	
released	the	industry’s	first	public	OpencL	GpU	drivers	for	
Windows	and	Linux.

the	Fermi	architecture	allows	compilers	 to	optimize	 the	
memory	layout	for	arrays	when	using	OpencL	or	Directcom-
pute.	 efficient	 memory	 layout	 is	 a	 crucial	 feature,	 because	
arrays	are	central	to	the	programming	model.	all	data	sets	on	
which	the	parallel	threads	operate	are	stored	in	arrays.

Programmers Get a Break
Just	 a	 few	years	 ago,	GpUs	weren’t	 even	programmable	 in	
c.	GpGpU	pioneers	had	to	struggle	with	an	unconventional	
assembly	 language	 and	 try	 to	 fit	 the	 square	 pegs	 of	 their	
general-purpose	 code	 into	 the	 round	 holes	 of	 a	 graphics-
oriented	 architecture.	 nvidia’s	 cUDa	 development	 tools	
allowed	 programmers	 to	 write	 code	 in	 fairly	 conventional	
c,	 albeit	with	a	 few	missing	 features	 and	 some	extensions	
specific	to	cUDa.

the	 Fermi	 architecture	 makes	 the	 GpU	 programmable	
in	 object-oriented	 c++,	 not	 just	 in	 procedural	 c.	 more-
over,	Fermi	supports	the	entire	c++	language,	not	a	subset.	
programmers	can	use	virtual	functions,	try/catch	statements	
(which	handle	exceptions),	and	make	system	calls,	 such	as	
stdio.h	 (the	 standard	 input/output	 channel).	 nvidia	 pro-
vides	 a	 cUDa	 c/c++	 compiler,	 but	 any	 third-party	 tool	
vendor	can	target	the	cUDa	architecture.

a	 key	 factor	 in	 bringing	 c++	 to	 cUDa	 is	 Fermi’s	 new	
unified	 memory	 addressing.	 previous	 cUDa	 architectures	
allocated	different	memory	regions	for	local	memory,	shared	
memory,	and	global	memory.	the	fragmented	memory	map	
required	 different	 load/store	 instructions	 for	 each	 region	
and	prevented	nvidia	from	fully	implementing	pointers	in	
c	 and	 c++.	 In	 particular,	 c++	 relies	 heavily	 on	 memory	
pointers,	because	every	“object”	in	this	object-oriented	lan-
guage	requires	at	 least	one	pointer.	a	typical	program	cre-
ates	hundreds	of	objects.

the	Fermi	architecture	fixes	those	problems	by	unifying	
everything	 in	 a	 single	 memory	 space.	 Load/store	 instruc-
tions	can	now	access	any	type	of	memory	within	this	unified	

space.	 at	 run	 time,	 Fermi	 uses	 a	 new	 address-translation	
unit	 to	 convert	 pointers	 and	 other	 memory	 references	 to	
physical	memory	addresses.	In	addition,	Fermi	expands	the	
	memory-addressing	range	from	32	bits	(maximum	4Gb	of	
memory)	to	40	bits	(maximum	1tb	of	memory).	together,	
these	changes	bring	higher-level	 languages	 to	cUDa,	sim-
plify	the	programming	model,	and	vastly	expand	the	mem-
ory	 available	 for	 large	 data	 sets—vital	 features	 for	 high-
	performance	computing.

Unlike	 most	 other	 compilers,	 cUDa	 compilers	 don’t	
translate	 source	 code	 directly	 into	 native	 machine	 code.	
Instead,	 they	 target	a	 low-level	virtual	machine	and	paral-
lel	 thread	 eXecution	 (ptX)	 instruction	 set.	 the	 ptX	 vir-
tual	machine	is	invisible	to	users	and	delivered	as	part	of	the	
GpU’s	graphics	driver.	Few	people	even	know	it’s	there,	but	
it’s	very	important	to	cUDa	software	developers.	ptX	pro-
vides	a	machine-independent	layer	that	insulates	high-level	
software	from	the	details	of	the	GpU	architecture.

When	users	install	a	cUDa-enabled	program,	the	driver	
automatically	 translates	 ptX	 instructions	 into	 machine	
instructions	 for	 the	 specific	 nvidia	 GpU	 in	 the	 system.	
It	 doesn’t	 matter	 whether	 the	 GpU	 is	 based	 on	 the	 G80,	
Gt200,	 or	 Fermi	 architecture—the	 installed	 program	 will	
be	 optimized	 for	 that	 GpU.	 In	 this	 way,	 cUDa	 programs	
run	 natively	 (full	 speed)	 but	 are	 delivered	 in	 a	 machine-
independent	 format	 that’s	 ready	 for	 installation	 on	 any	
cUDa-capable	system.	nvidia	says	more	than	100	million	
pcs	have	cUDa-capable	GpUs.

CUDA Works With Visual Studio
besides	bringing	c++	to	cUDa,	the	Fermi	architecture	with	
ptX	 2.0	 makes	 it	 easier	 to	 use	 other	 high-level	 program-
ming	languages	and	compilers.	Fermi	supports	Fortran—a	
vital	language	for	scientific	and	engineering	applications—
as	 well	 as	 Java	 (via	 native	 methods)	 and	python.	On	Sep-
tember	29,	the	portland	Group	released	a	beta	version	of	its	
cUDa	Fortran	compiler.	Java	is	widely	used	in	the	financial	
industry,	and	python	is	popular	for	rapid	application	devel-
opment.	ptX	2.0	also	adds	features	for	OpencL	and	Direct-
compute,	such	as	new	bit-reverse	and	append	instructions.

Fermi	 enables	 better	 tool	 integration,	 too.	 For	 the	 first	
time,	 programmers	 will	 be	 able	 to	 use	 microsoft’s	 Visual	
Studio	 to	 write	 cUDa	 software.	 nvidia	 has	 announced	
nexus,	a	new	tool	 suite	 that	 integrates	with	Visual	Studio,	
so	programmers	can	write	cpU	and	GpU	code	in	a	single	
development	 environment.	 nexus	 includes	 a	 debugger,	 a	
performance	 profiler,	 and	 a	 graphics	 inspector	 that	 works	
with	apIs	like	Direct3D.	because	Fermi	supports	exception	
handling	at	the	hardware	level,	programmers	can	set	break-
points	in	their	cUDa	source	code	and	single-step	through	a	
program	while	debugging.

Visual	Studio	 is	 a	popular	development	environment,	 so	
cUDa	programmers	will	no	doubt	welcome	nexus.	(nvidia	
plans	to	release	a	beta	version	on	October	15.)	this	integration	
is	a	significant	achievement,	and	 it	adds	yet	another	option	

F o r M o r e I n f o r m a t i o n

Nvidia publicly disclosed the Fermi GPU architecture
on September 30 at the GPU Technology Conference
in San Jose, California. Nvidia CEO Jen-Hsun Huang
demonstrated the first working silicon of a Fermi chip.
Nvidia hasn’t announced specific implementations of
the architecture but hopes to ship devices this year.
For more information, visit www.nvidia.com/fermi.

11Looking	Beyond	graphics

	 © 	 I n - S t a t 	 O c t O b e r 	 5 , 	 2 0 0 9 	 m I c r O p r O c e S S O r 	 r e p O r t

for	writing	high-performance	computing	software	on	GpUs.	
(See	MPR 7/28/08-02,	“tools	for	multicore	processors.”)

everyday	 users	 will	 be	 oblivious	 to	 these	 behind-the-
scenes	 improvements	 for	 software	 development.	 However,	
the	Fermi	architecture	 is	 certain	 to	attract	new	developers	
and	 broaden	 the	 base	 of	 cUDa	 software.	 In	 anticipation	
of	 the	Larrabee	 launch,	 Intel	 is	 strengthening	 its	 software-
development	 resources,	 too.	 Intel	 recently	 acquired	 two	
companies	specializing	in	parallel-programming	tools.	(See	
MPR 9/14/09-01,	“Summer	Shopping	Spree.”)

amD	is	pursuing	the	market	for	high-performance	com-
puting	as	well.	atI	Stream	 is	 similar	 in	concept	 to	cUDa	
but	 isn’t	 as	 mature	 and	 hasn’t	 attracted	 as	 many	 software	
developers.	(See	MPR 12/22/08-01,	“amD’s	Stream	becomes	
a	river.”)

Redefining the GPU Market
With	the	Fermi	architecture,	nvidia	is	making	a	big	push	to	
move	its	GpUs	beyond	consumer	graphics	and	games.	not	
that	games	aren’t	important—they	remain	the	driving	force	
behind	 the	 evolution	 of	 discrete	 GpUs.	 Serving	 the	 con-
sumer	market	will	continue	to	be	Fermi’s	day	job.	but	GpUs	
are	becoming	more	 than	mere	coprocessors	 for	offloading	
graphics	chores	from	the	system’s	host	cpU.

For	 consumers,	 GpU	 computing	 can	 speed	 up	 media-
intensive	 programs	 that	 run	 sluggishly	 on	 even	 the	 latest	
multicore	cpUs.	to	 take	 just	one	example,	digital	video	 is	
wasting	untold	hours	of	time	as	pcs	grind	through	a	lengthy	
transcoding	task.	cUDa-enabled	transcoders	like	elemental	
technologies’	badaboom	can	reduce	 the	waiting	period	to	
minutes.	 and	 cleaning	 up	 the	 video	 frame-by-frame	 was	
unthinkable	until	motionDSp’s	vreveal	came	along.

the	 wide	 appeal	 of	 these	 programs	 may	 persuade	 con-
sumers	to	pay	closer	attention	to	the	specs	of	a	new	pc.	Until	
now,	 users	 who	 disdained	 games	 could	 be	 satisfied	 with	 a	
low-end	graphics	processor	integrated	with	the	system	chip-
set.	 GpU	 computing	 opens	 up	 entirely	 new	 possibilities,	
potentially	making	a	discrete	GpU	a	must-have	feature.

For	 professionals,	 GpUs	 are	 even	 more	 compelling.	
Whereas	the	performance	of	multicore	cpUs	is	rising	incre-
mentally,	high-performance	computing	on	GpUs	is	growing	
by	 leaps	and	bounds.	as	 tools	 improve	and	developers	get	
the	hang	of	programming	these	beasts,	the	gains	can	exceed	
two	orders	of	magnitude.

and	time	is	money—sometimes	figuratively,	sometimes	
literally.	 If	 an	 energy	 company	 can	 expand	 its	 oil	 and	 gas	
reserves	by	analyzing	its	seismic	probes	more	quickly,	it	can	
pump	 more	 crude	 and	 capture	 more	 market	 share.	 If	 an	
investment-management	company	like	bloomberg	can	cal-
culate	the	optimum	pricing	for	bonds	overnight,	while	the	

markets	 are	 closed,	 it	 can	 gain	 a	 crucial	 edge	 for	 the	 next	
day’s	trading.

Fermi Advances the Art
One	 obstacle—the	 much-discussed	 difficulty	 of	 writing	
parallel	 software—is	 gradually	 being	 overcome	 by	 better	
GpU	 architectures	 and	 development	 tools.	 nvidia’s	 Fermi	
architecture	 is	 a	 leap	 forward	 in	 this	 regard.	 It’s	 not	 just	
faster.	by	supporting	c++	(and	other	high-level	languages),	
OpencL,	Directcompute,	and	Visual	Studio,	it	will	be	easier	
to	 program,	 too.	as	 developers	 look	 around	 and	 see	 their	
competitors	porting	applications	to	GpUs,	resistance	to	new	
programming	 paradigms	 will	 fall,	 and	 we’ll	 all	 get	 faster	
software.

perhaps	the	most	exciting	prospects	are	the	applications	
yet	 to	be	discovered.	every	 leap	 in	computing	power	 leads	
to	new	applications	that	were	impractical	before.	Unlocking	
the	power	of	parallel	processing	has	been	a	dream	of	com-
puter	scientists	for	decades.	the	advent	of	affordable	chip-
level	multiprocessing	may	be	the	catalyst.	If	one	lesson	can	
be	drawn	from	the	history	of	computing,	it’s	that	the	world	
has	 an	 insatiable	 appetite	 for	 computing	 power.	 Someone	
will	always	find	a	way	to	use	it.

nvidia	 already	 has	 the	 momentum	 in	 this	 field,	 ahead	
of	amD’s	graphics	processors	and	Intel’s	unseen	Larrabee.	
the	 Fermi	 architecture	 has	 the	 potential	 to	 increase	 that	
lead.	amD	is	pursuing	a	somewhat	different	strategy	with	
its	future	“Fusion”	chip	architecture.	Fusion	will	integrate	a	
graphics	processor	with	the	x86	cpU	on	the	same	chip—an	
option	unavailable	to	nvidia,	which	doesn’t	make	x86	pro-
cessors.	 cpU/GpU	 integration	 has	 various	 trade-offs,	 but	
it	 will	 probably	 boost	 graphics	 performance	 in	 lower-cost	
systems.	 Intel’s	 Larrabee	 remains	 an	 unknown	 factor,	 too,	
and	it	will	offer	different	trade-offs	than	conventional	GpU	
architectures.

nvidia’s	 vulnerability	 may	 be	 its	 attempt	 to	 combine	
world-class	 graphics	 performance	 with	 general-purpose	
compute	performance	in	one	chip.	With	three	billion	tran-
sistors,	a	Fermi	GpU	will	be	more	than	twice	as	complex	as	
nvidia’s	 existing	 Gt200	 chips.	at	 some	 point,	 if	 not	 now,	
features	intended	to	boost	compute	performance	may	com-
promise	 the	 chip’s	 competitive	 position	 as	 an	 affordable	
graphics	processor.	at	 that	 juncture,	 the	architectures	may	
have	to	diverge—especially	if	the	professional	market	grows	
as	large	as	the	consumer	market.

For	now,	however,	Fermi	significantly	advances	the	state	
of	 the	art	 in	 this	 field.	 It’s	up	 to	nvidia	 to	 implement	 the	
architecture	 in	 a	 good	 chip	 design,	 manufacture	 the	 parts	
without	 hiccups,	 and	 ship	 the	 finished	 products—before	
competitors	can	steal	back	the	momentum.	

To subscribe to microprocessor	report, phone 480.483.4441 or visit www.mpronline.com

